HP 9000 Series 200 Computers U orciano

Pascal 3.0 Graphics Techniques

Pascal 3.0 Graphics Techniques
for the HP 9000 Series 200 Computers

Manual Part No. 98615-90035

© Copyright 1984, 1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. Ali rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

June 1984.. First Edition

October 1984.. Update

November 1984...First Edition with previous updates merged.

March 1985...Update

This update added references to using the HP 46060 Mouse for graphics input.

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard computer sys-
tem products sold in the U.S.A. and Canada, this warranty applies for ninety (90) days from the date of shipment.* Hewlett-
Packard will, atits option, repair or replace equipment which proves to be defective during the warranty period. This warranty
includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be shipped
freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not provided by
Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninter-
rupted or error free

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR
CONSEQUENTIAL DAMAGES.

HP 9000 Series 200

For the HP 9000 Series 200 family, the following special requirements apply. The Model 216 computer comes with a 90-day,
Return-to-HP warranty during which time HP will repair your Model 216, however, the computer must be shipped to an HP
Repair Center.

All other Series 200 computers come with a 90-Day On-Site warranty during which time HP will travel to your site and repair
any defects. The following minimum configuration of equipment is necessary to run the appropriate HP diagnostic
programs: 1) 2 Mbyte RAM:; 2) HP-compatible 3'4" or 54" disc drive for loading system functional tests, or a system install
device for HP-UX installations; 3) system console consisting of a keyboard and video display to allow interaction with the CPU
and to report the results of the diagnostics.

To order or to obtain additional information on HP support services and service contracts, call the HP Support Services Tele-
marketing Center at (800) 835-4747 or your local HP Sales and Support office.

* For other countries, con‘act your local Sales and Support Office to determine warranty terms

98615-90035, rev: 3/85

Table of Contents

Chapter 1: Introduction to Graphics

elcome. . .o 1
Why GraphiCs?.o e 2
Using the Graphics Library 4
INCLUDE files. oot e e e e e e 5
The Graphics Programs. R 6
Customizing the Programs for Your System. o 6
Drawing Lines 7
SCaliNGo 9
Setting the Aspect Ratio. i 11
Defining a VIewport 13
Virtual Coordinates and World Coordinates 13
Specifying the Viewport. 14
Labellinga Plot 15
Setting the Character Size i 16
Centering Labels. 17
Setting the Label’'s Direction i 17
Bold Labels 19
Axesand Tick Marks. 20
Clipping Lines 23

A User-Defined Clipping Algorithm o .. 24
Labelling Axes 25

Chapter 2: Miscellaneous Graphics Concepts

Setting the Display Limits. 33
More on Defining a Viewporto 34
Calculating Window Limits. 36
Drawinga Window Frame 37
Turning Displays Onand Off 39
Conversion Between Coordinate Systems 40
More on Labellinga Plot. 43

The Character Cell e 43

Setting Character Size 45

Setting the Label’s Direction i 48

Justifying Labels 50
CRT Drawing Modes. e 55
Faster Drawing Procedures. 56
Selecting Line Styles 57
[sotropic Scaling. 59

Axes and Grids.o 62

iv

Logarithmic Plotting 64
Homemade Mathematical Functions 64
Takinga NumbertoaPower 64

The Logarithmto Any Base 65

Back to Logarithmic AXes... 65
Storing and RetrievingImages 68
Data-Driven Plotting 71
Many Lines in One Step.o 71
Drawing Multi-Line Objects 72
What'sina Polygon? 74
When to Use Which Polygon? 74
Polygon Filling. 74
Shading Graphs. 78
Highlighting Data Curves 79

Chapter 3: External Graphics Displays and Plotters

Selecting a Plotter 81
Dumping Raster Images 82
External Color Displays. 84
External Plotter Control 85
Controlling Pen Speed 85
Controlling Pen Acceleration. 86
Controlling Pen Force. 86

Chapter 4: Interactive Graphics

INtrodUCHONo 87
Characterizing Graphic Interactivity. 88
Selecting Input Devices. 89
Single Degree of Freedom 89
Non-separable Degrees of Freedom 92
Separable Degrees of Freedom. 92
AlLCoNtiNUOUSo e 92

All Quantizable 93

Mixed Modes. 93
Echoes 94
TheBuiltIn Echo 94
Rubber Echoes 97

Tablets and Aspect Ratios 98

Chapter 5: Color Graphics

ColOr! o 99
The DGL Color System i 99
Color As An Attributeo 99
The Color Table e 100
Default Colors . . .o oottt e 100
The Primary Colors oo 100

The Business ColOrs.ottt e e e e e 100
Monochromatic Defaults 101

If You Don’t Likethe Defaults. 101
Models for Color Specification.o i 102
The RGB Model (Red, Green, Blue)........... 102
The HSL Model (Hue, Saturation, Luminosity), 103
Which Model?o 107
COlOT SPACES . . . o vttt e 109
Primaries and Color Cubes i 109
The RGB Color Cubeo e e 110

The CMY Color Cubeot e 111

The HSL Color Cylinder e 112
Reality Intrudes 114
PlOtErS . . . ottt 114
Frame Bufferso 115
Frame Buffer Depth 115
Faking More Colors From a Frame Buffer....................., 116
Dithering i 117
Creatinga Dithered Color. i i 118

If YouNeed More Colors. oovv it e 121
Frame Buffer Contents. e 121
The Model 236 Color Computer Color System. 122
The Color Map 122
True User Definable Color. 123
Retroactive Color Changesoooiiiiiiiiii i 123
IfYouNeed More Than 16 Colors. oottt 123
Optimizing For Dithering. 124
Resolution and Color Models. o 126
RGB ResOIUtONottt e e e e 126
HSL ResolUON. oottt e e e e e e 126
Writing Modes and Colort 127
Dominant WHtingo 128
Non-Dominant Writing.o o 128
Erasing . .. 128
Complementary Writing. 128
Making Sure Echoes Are Viisible.o 129
Drawing Modes and the Frame Buffer.............................. 129
Special Considerations.ouutii i 132
Tt .« o e et 132

POlYGONS . . .o 132

vi

Effective Userof Color 133
Seeing Coloro 133

It's All Subjective, Anyway 133

Mixing Colors o 134
Designing Displays 134
Objective Color Use 135
ColorBlindness 135
Subjective Color Use 135
Choosing Colors. 135
Psychological Color Temperature. 136
Cultural Conventions. 136
Reproducing Color Graphics 137
Color Gamuts 137
ColorHard Copy 137
Photographingthe CRT. 138
Plottingand the CRT 138

Color References. 139

Appendix A: Listings of Example Programs

AxesGrid. 142
BAR KNOB. . . 149
BAR_KNOBZ . 152
CharCell 157
COLOR .. 158
CsizeProg 165
DataPoint 166
DrawMdPrg 166
FillProg 169
FllGraph. . .. 170
GStorProg 171
ISOPTOg . . . 180
JUStProg . .. 186
LdirProg 190
LOCATOR . . 191
LogPlot. .. 194
MarkrProg 196
PLINeProg 197
PolyProg. 198
SINASPECE 199
SINAXESL . 200
SINAXESZ . . 204
SINCHP . .. 209
SinLabell 213
SinLabelZ 214
SinLabeld 215
SinLine . .. 216
SINVieWDt. . . 216

SINWINdow. 217

Appendix B: Graphics Procedure Reference

AWAIT_LOCATOR 220
CLEAR _DISPLAY . . 225
CONVERT_WTODMM e 226
CONVERT _WTOLMM. . . e e 227
DISPLAY _FINIT . . . e 228
DISPLAY _INIT . . 232
DISPLAY _TERM. . .. 237
GRAPHICSERROR . .. 238
GRAPHICS_INIT . .. 240
GRAPHICS _TERM. ... 241
GTEXT L 242
INPUT_ESC. . .. 244
INQ_.COLOR_TABLE e 247
INQ_PGN_TABLE e 249
INQ WS . 251
INT L LINE . . 258
INT_MOVE . . 260
INT_POLYGON . .. e e 262
INT_LPOLYGON_DD 265
INT_POLYLINE 269
LOCATOR_INIT . . . 271
LOCATOR_TERM 274
MAKE_PIC_CURRENT 275
MARKER . .. 276
MOVE . . 277
OUTPUT_ESC e 278
POLYGON. . . . 283
POLYGON_DEV_DEP. 286
POLYLINE. . 290
SAMPLE_LOCATOR 292
SET _ASPECT .. 294
SET_CHAR _SIZE 296
SET _COLOR. 297
SET_COLOR_MODEL. e 300
SET_COLOR_TABLE e 302
SET_DISPLAY_LIM . . 306
SET_ECHO_POS . . . 309
SET_LINE_STYLE 311

SET_LOCATOR _LIM. . . 315

vii

viii

SET_LINE_WIDTH. ... 319
SET_PGN_COLOR e 320
SET PG LS . 323
SET _PGN_STYLE . .. 327
SET _PGN_TABLE 328
SET _TEXT _ROT . . . 331
SET _TIMING 332
SET_VIEWPORT . .. 334
SET_WINDOW . . . 336
Module Dependency Table 339

Subject Index

Chapter

1

Introduction to Graphics

Welcome

One of the most exciting features of your Series 200 computer is its graphics capability. It is much
easier to grasp the trends, relative sizes or quantities represented by data if it is presented in a
graphical form, as opposed to tabular form.

This manual will introduce you to the set of graphics routines in the Series 200 Device-independent
Graphics Library (DGL) graphics package. The goals of the DGL package are:

1. As its name implies, it is a device-independent package. Thus, programs running on one
computer or implementation should transport to another computer or implementation of
DGL with a minimum of conversion effort.

2. Itis reasonably small. DGL is not meant to be an exhaustive library containing routines to do
all conceivable grapics operations, but it gives you enough capability to develop them
yourself.

3. DGL is quite fast. Many of its operations press the capabilities of the Motorola 68000
processor, the CPU in the Series 200 machines.

This manual is meant to teach you how to use the routines incorporated into DGL to produce
highly readable and visually acceptable output. The manual assumes you are familiar with the
Pascal programming language, and that you have access to a Pascal 3.0 Workstation System
Manual, a Pascal 3.0 Procedure Library manual, and the textbook An Introduction to Programming
and Problem Solving with Pascal, and that you will look up any programming/syntactic topics you
don’t understand.

Most of the demonstration programs and routines in the next three chapters of this manual are
stored for your convenience on the DGLPRG: disc which was shipped with this manual. You are
encouraged to run these programs as you are reading the manual, as they will make under-
standing the concepts much easier. '

Note

The demonstration programs and routines on the DGLPRG : disc are
for the purpose of instruction only. They are not part of the DGL
package, and as such, they are not covered by any warranty, ex-
pressed or implied. Hewlett-Packard shall not be liable for incidental
or consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these routines.

2 Introduction to Graphics

Why Graphics?

Below is some data. As quickly as you can. determine if its overall trend is steady, rising or
falling. Are there any periodic motions to it? If so, how many cycles are represented in the one
hundred points?

Voltage Variance Voltage Variance
Time (sec) Voltage Time (sec) Voltage
1 0.1610 51 0.1669
2 0.1625 52 0.1655
3 0.1625 53 0.1665
4 0.1628 54 0.1662
5 0.1636 55 0.1667
6 0.1631 56 0.1668
7 0.1627 57 0.1681
8 0.1608 58 0.1688
9 0.1610 59 0.1687
10 0.1606 60 0.1707
11 0.1607 61 0.1716
12 0.1617 62 0.1716
13 0.1614 63 0.1694
14 0.1626 64 0.1698
15 0.1634 65 0.1683
16 0.1640 66 0.1683
17 0.1656 67 0.1671
18 0.1660 68 0.1681
19 0.1644 69 0.1683
20 0.1651 70 0.1684
21 0.1635 71 0.1681
22 0.1641 72 0.1698
23 0.1628 73 0.1705
24 0.1619 74 0.1723
25 0.1630 75 0.1730
26 0.1624 76 0.1734
27 0.1627 77 0.1714
28 0.1644 78 0.1722
29 0.1644 79 0.1716
30 0.1657 80 0.1696
31 0.1660 81 0.1702
32 0.1670 82 0.1699
33 0.1672 83 0.1684
34 0.1666 84 0.1706
35 0.1658 85 0.1696
36 0.1662 86 0.1715
37 0.1646 87 0.1730
38 0.1633 88 0.1737
39 0.1634 89 0.1739
40 0.1636 90 0.1751
41 0.1645 91 0.1732
42 0.1652 92 0.1747
43 0.1656 93 0.1729
44 0.1677 94 0.1717
45 0.1689 95 0.1710
46 0.1680 96 0.1707
47 0.1696 97 0.1706
48 0.1680 98 0.1709
49 0.1674 99 0.1713
50 0.1677 100 0.1720

Introduction to Graphics 3

A wise old computer programmer once said, ‘A graphical output is equivalent to 1K words of
text.”” He was right. Unless both hemispheres of your brain are hyperdeveloped, it probably
took a minute or two to answer each of the previous questions. Below is a graph of the data in
the table. Observe that the graphical nature of the output makes what the data is doing much
clearer. This clarity and understandability at a glance is what computer graphics is all about.

r 3
VOLTAGE VARIANCE
@.1880
8.1775
8.1750f
©a.1725F
o
™
+0.1708F
o |
> o167
[
8.16581
@.1625F
a.lsaa- FFSTRY IR FTUTS EUUEE SRV FUUTI SYTUU FRUVE FETVE FUTTE FTTVE FRUTY FUUTY SRS FRUTS FRUTY N 1 1
(] 18 28 38 40 58 50 78 (7] 309 108
Time (seconds)
_ _J

A progressive example of how this plot was created is given through the rest of this chapter.
Each installment demonstrates more of the graphics routines available. The successive plots, all
representing the same data, become clearer and clearer as we learn some of the concepts of
computer graphics and how to implement them with the routines available to us.

4 Introduction to Graphics

Using the Graphics Library

To run the demonstrations programs in this manual, you must use the DGL routines contained in
the GRAPHICS library file on the LIB: disc. The first step, then, is to make these libraries accessible
to the demonstration programs at the appropriate times.

There are two times when the GRAPHICS modules need to be accessible:

e When the program is compiled, and
e When the program is loaded.

The simplest way to make the GRAPHICS library accessible during compilation and loading is to
use the What command to make GRAPHICS the system library. To do this:

1. At the Main Command Level, press (_W) to invoke the What command.

2. Press to indicate you want to change the system library setting, and type the complete
file specification for the GRAPHICS library file. Be sure to type a period after the file name, to
prevent the system from appending a suffix to the name. For example, if the GRAPHICS file
is still on the LIB: disc, you would type:

LIB:GRAPHICS,

3. Press(_Q) to exit from the What command. When you begin compiling and running the
demonstration programs, make sure the GRAPHICS library file is on-line’.

Note
If you have plenty of memory in your computer, you can speed com-
pilation by copying the GRAPHICS file into a memory (RAM:) volume
of about 400 blocks. Be sure to use the What command to change the
system library to RAM:GRAPHICS if you do this. You can also speed
program execution by permanently loading the GRAPHICS file with the
Permanent command.

1 - On-line” means that it is accessible at that moment. This could mean either that the library is in a memory volume. or the library is on a disc
and the disc is currentlu in a drive.

Introduction to Graphics

INCLUDE files

In many of the following programs, there is a compiler directive called INCLUDE. This causes
the compiler to access the specified file, compile the contents as if it were in the original file, and
when the end of the file is reached, return to the original file and continue compilation.

One advantage to INCLUDE files is that many programs can use the same file, not merely
copies of the file. This makes it much easier to make modifications to the routines, because only
one copy of the routine need be changed. If the routine had been physically copied into each
program that used it, every occurrence of it would have to be individually changed.

The INCLUDE directives used in the program files assume there is a volume on-line which
contains the text files for all the necessary inclusions. Again, if you have enough memory, the
INCLUDE process could be speeded up tremendously by placing the necessary files in a
memory volume.

Here is some information to help you define how large the “‘enough memory,” referred to in the
previous paragraph, is. Below is a list of files at least some of which you will probably want to
permanently load (the main advantage to permanently loading is very fast access) and the amount
of memory they consume. The approximate file sizes are expressed in 256-byte blocks.

File Name Approximate File Size
EDITOR (subsystem) 240 blocks
FILER (subsystemn) 230 blocks
COMPILER (subsystem) 835 blocks
LIBRARIAN (subsystem) 225 blocks
LIBRARY (library) 65 blocks
IO (library) 245 blocks
GRAPHICS (library) 810 blocks

You must also take into account any memory volumes you have defined, and the size of the
program you are dealing with, etc.

5

6

Introduction to Graphics

The Graphics Programs

All of the following plots use Cartesian (rectangular) coordinates: X'’ specifies the left-right
distance (with values increasing as you go to the right), and **Y"" specifies the down-up distance
(with values increasing as you go up).

In the programs in this chapter and the next, each program name is identical to the file name
which contains it. [t is not mandatory that the program name is the same as the file name, but it
helps to find the file.

All the examples that follow get the Y-value from a function called DataFoirnt. This function,
given an X value. merely returns the appropriate Y value each time it is invoked. You could just
as well be reading values from a voltmeter, temperature sensor, anemometer, or any other
device that you can connect to a computer. Since this function does not change from example
to example, and since it represents any generic data-defining process, the function will not be
listed at each update of the plotting program. For reference, though, it is listed in the appendix.

Customizing the Programs for Your System

The demonstration programs on the DGLPRG: disc will send graphics output to the current console
of a Series 200 Computer. The “current console’”” is the CRT where alpha is displayed after the
system is booted; i.e., the CRT where the Pascal system command lines appear. Graphics display
device selection is performed by the DISPLAY_INIT procedure. If you would like to use a different
CRT (or other graphics device) as your display device, you must change the DISPLAY_INIT
procedure call accordingly.

The first parameter in the DISPLAY_INIT procedure call is called the device selector. It specifies
which display device you would like to use for graphics output. The demonstration programs
declare the device selector as a constant with the name CrtAddr. Graphics display devices are
selected as follows:

® A device selector of 3 specifies the current console as the graphics display device (again, this is
where the command line appears). This is the value used in all of the demonstration programs.
If the current console has no graphics hardware, the system may search for another display
that does have graphics hardware and make it the graphics display device.

® A device selector of 6 specifies any other internal CRT as the graphics display device (if one
exists). Internal refers to any display whose frame buffer resides in the system’s “internal
space,” i.e., any CRT which does not require a select code and/or bus address to access it.

® A device selector in the range 8 through 31 specifies the select code of the interface to which
the desired graphics display device is attached.

® A device selector in the range 100 through 3199 specifies the composite HP-IB select code/bus
address of the desired HP-IB graphics display device.

Introduction to Graphics

The second parameter is the DISPLAY_INIT procedure call is called the control value. It is used to
specify device-dependent characteristics of the graphics display device. The demonstration prog-
rams declare the control value as a constant called Cont rolWord. For complete details on this value,
refer to the DISPLAY_INIT section of Appendix B. However, there are two cases that are worth
discussing:

e If you have a Model 237 and are using the bit-mapped display as your current console, you
may remove the type-ahead buffer echo at the bottom of the screen (and use the entire display
for graphics) by specifying a device selector (CrtAddr) of 3 and a control value (ControlWord)
of 256:

CrtAddr= 33
ControlWord= 2564

The value of O (used in the demonstration programs) retains the type-ahead buffer.

e If you have an HP 98627A RGB interface connected to a 60 Hz, non-interlaced color
monitor!, you can designate it as the graphics display device by specifying the interface’s select
code as the device selector (Crtaddr), and a control value (Cont rolkord) of 256 (specifying US
STD, 512 x 390, 60Hz refresh). See the table in the DISPLAY_INIT section of Appendix B for
details.

The control values are not merely ‘‘magic numbers.” Bits 10, 9 and 8 in the control value allow you
to specify what kind of CRT you wish to interface to (in the case of external monitors), or to set
characteristics of the display (in the case of the Model 237 bit-mapped display). The value of 256 is
not necessary if you are plotting on a U.S. Standard display (see the “‘External Color Displays”
section in this chapter); 0 defaults to the same characteristics as does 256.

The final parameter in the DISPLAY_INIT procedure call is an integer variable that will be assigned
0 if the display device was successfully initialized, or a non-zero value if initialization failed. For more
details, refer to the DISPLAY_INIT section of Appendix B.

By modifying the device address and/or the control value, images which were drawn on one device
can be drawn on another device with a minimum of effort.

There are some limitations, though. If you are doing an operation on one display device, and
attempt to send the image to another device which does not support that operation, it won’t work.

Drawing Lines

You are encouraged to compile and run the following programs on your computer as they are
presented. Turn on your machine and load the Pascal system (if you don’t know how to do this, see
Chapter 2 of the Pascal 3.0 User’s Guide). This program, as most of the following programs, use
the compiler directive 1NCLUDE. Compile and run the following program,; it is on the file “SinLine”
on your DGLPRG: disc.

1 Depending on your choice of color monitor, there may be more specification necessary in the control value variable of the DISPLAY_INIT
procedure. See the ‘‘External Color Displays’™ section in Chapter 3.

7

8 Introduction to Graphics

To move the pen somewhere, you call the procedure MOVE, and to draw lines, you call the
procedure LINE. Both of these procedures have two parameters: the X and Y coordinates of
the point you want to move or draw to. The following program does just that.

()

\ Y,
prodgram SinlLine(outrPut)s
import d9l._1ib3 {9et dgrarhics routines}’
const
CrtAddr= 33 {address of internal CRT}
Control= 0% {device controls O for CRTZ
var
ErrorReturn: inteders {variable for initialization outcome}
i inteders
Y1 reals
$include ‘DGLPRG:DataPoint’$ {function: vi=fix) }
FPATEE AR RAEERAERERE R R R AR R RN R RN R RN AR R RN R AR R R R RN RRERNRNR)
bedgin {body of prodram "SinLine"}
drarhics_inits {initialize drarhics svstem}
display_init(CrtAddrsControlsErrorReturn) {which output device?}
if ErrorReturn=0 then bedin {outeput device initialization OK?}
for X:=1 to 100 do bedin {100 points totall}
Yi=DataPoint ()3 {det a Point from the functionl
if X=1 then moue(X/100,Y) {move to the first Point...,}
else line(X/1004Y)3 {+vivand draw to all the rest}

ends {for Xi=1 to 100}
endi {ErrorReturn=07}
drarhics_terms {terminate the drarhics rPacKadel}
end., {rprodram "SinlLine"}

Probably the first reaction you had when looking at the previous plot was that the plot doesn’t
show you anything. But as you can see, this simple program is all you need to draw a
rudimentary plot.

Introduction to Graphics 9

You must always execute the procedure GRAPHICS_INIT before any other graphics routine; if
you don’t, almost every graphics routine called will either be ignored or will cause an error. As
its name implies, it initializes the graphics system,; that is, it sets various graphics parameters to
their default values. These are the operations performed by the GRAPHICS_INIT routine:

® Sets the aspect ratio to 1;

e Sets the virtual coordinates and viewport limits to range from 0.0 to 1.0 in both the X and Y
directions;

@ Sets the world coordinate limits to range from —1.0 to + 1.0 in both the X and Y directions;
e Sets the starting position to 0,0 in world coordinates; and
o Sets all attributes to their default values.

In case there were any unfamiliar concepts referred to above, don’t panic. We will soon cover all
the above topics, and more.

The following lines comprise the real guts of the SinLine program:

i =1 then mouve{X/100,Y)
else line(X/1004¥) 3

In a loop, the statement moves to the first point returned by the DataPoint function, and
draws to all the rest. Each successive point is determined by the loop control variable ¥ for the X
direction and the value returned by the function DataPoint for the Y direction.

The call to the routine GRAPHICS_TERM should be the last graphics routine called. It termin-
ates the graphics package.

Scaling

Probably the first reaction you had when looking at the previous plot was ‘‘“That doesn’t show me
anything...”” That's true; it doesn’t show much information. There are two reasons for this. The first
is that there is not enough variation in the curve; it’s too flat to show us anything. The second is that
it is all compressed on the right half of the screen. If we exaggerated the Y direction to the point
where we could see the variations, the lines would be close enough to vertical that it would be
somewhat difficult to interpret the curve. Therefore we must expand it toward the left.

Both of these problems can be remedied by scaling. In this context, scaling could be defined as
“defining the values the computer considers to be at the edges of the active plotting surface.”
The SET_WINDOW procedure defines the transformation used to map coordinates between
the virtual display coordinate system (the coordinate system used by the DGL to describe the
display device) and the world coordinate system (the coordinate system used by the user).
Typically, the left edge is the smaller X, the right edge is the larger X, the bottom is the smaller
Y, and the top is the larger Y'. Thus any point you plot which falls into these ranges will be
visible.

1 This is by convention only. If you specify a value for the left (or bottom) edge which is greater than the value of the right (or top) edge, it is
perfectly legal. The only restriction is that the left edge must not equal the right edge. The same goes for the bottom and top edges.

98615-90035, rev: 11/84

10 Introduction to Graphics

In our progressive example, the statement calling SET_WINDOW says that an X value of 0 should
be precisely on the left edge of the screen, an X value of 100 should be on the right edge, a 'Y value
of 0.16 is on the bottom, and a Y value of 0.18 is on the top.

The procedure SET_WINDOW typically causes anisotropic scaling to be invoked. Anisotropic
scaling means that one unit in the X direction is not forced to be the same length as one unitin the Y
direction. Conversely, isotropic scaling means that one unit in the X direction is equal to one unit in
the Y direction, as in a road map. Isotropic scaling is desirable in many cases. In many other cases,
however, it is not. In this example, we are graphing the voltage from a sensor versus time, and it
makes no sense at all to force seconds to be just as “‘long” as volts. Since we are dealing with data
types which are not equal, it would be better to use unequal, or anisotropic, scaling.

We said that the SET_WINDOW procedure ‘“‘typically’” causes anisotropic scaling to be invoked
because there is no procedure that guarantees that the scaling will be isotropic. You can, by doing
calculations with aspect ratios, figure what the exact values are to send to SET_WINDOW to force
isotropic scaling. This will be covered in the next chapter. Here is the next version of our progressive
example. It is in the file “SinWindow™” on the DGLPRG disc.

[)

o

_ y,
prodgram SinWindow(outrPut)s
import dgl_lib} {det drarhics routines’
const
CrtAddr= 33 {address of internal CRT}
ControlWards= 03 {device controls O for CRT?
var
ErrorReturn: inteders {variable for initialization outcomel
W inteders
Y reali

$include ‘DGLPRG:DataPoint’$ {function: v:i=f(x) }

Introduction to Graphics

{**}

bedin {body of prodram "SinWindow"?}
drarhics_inits {initialize the drarhics svstem}
displav_init(CrtAddrsControlWordErrorReturn)i {which output device?}
if ErrorReturn=0 then bedin {output device initialization OK?}
set_window(0s100,0,164+0,18) 3 {scale the window for the data?}
for X:=1 to 100 do bedin {100 points totall
Yi=DataPoint (X)3 {det a point from the function?
if X=1 then move(X,Y) {move to the first Point..s}
else line(XsY) {+yvand draw to all the rest}

endi {for X:=1 to 100}
endy {ErrorReturn=07}
drarhics.termi {terminate the drarhics pacKadel}
and. {prodram "SinWindow"?}

Granted, it would be nice to know what we are plotting, and what the units are, etc., but we’ll
get there in due time.

Setting the Aspect Ratio

You may have noticed on the last plot that the curve did not extend to the right and left edges of
the screen. In fact, the area of screen which was used was exactly as wide as the screen is high.
Thus, the aspect ratio—the width of the screen divided by the height—is exactly 1. This was
the second operation done by the procedure GRAPHICS_INIT, mentioned previously.

For most applications, one would not want to be restricted to using only a square area in the
middle of the screen. The procedure used to change the aspect ratio of the plotting surface is
SET_ASPECT. When calling the SET_ASPECT procedure, only the ratio of the two parameters
is used; thus, the values may be virtually anything, as long as the ratio between them is
reasonable.

To set the aspect ratio such that it will use the entire screen of a Model 36 computer, call the
SET_ASPECT procedure with parameters 511 and 389. These are the number of pixels in the
X direction minus one, followed by the number of pixels in the Y direction minus one. Distance
measures the amount of space between pixels', not the number of pixels. To illustrate the
reason why 1 must be subtracted from both values, imagine a very low-resolution graphics
display: 3 pixels in the X direction by 2 pixels in the Y direction.

(0,0) (1,0 (2,0)

1 The word *‘pixel”" is a blend of the two words *'picture element.”” and it is the smallest addressable point on a plotting surface. A Model 36
computer has 512 x 390-pixel resolution: thus there can be no more than 512 dots drawn in any one row of the CRT. or 390 dots drawn in
any one column.

12

Introduction to Graphics

As you can see, the distance between the rightmost pixels and the leftmost pixels is 2, and the
distance between the uppermost pixels and the lowest pixels is 1. Thus, the ratio of width to height
of this plotting surface is 2:1, rather than 3:2, as it would be if number of pixels were used.

From the previous explanation, it follows that the correct values to pass to the SET_ASPECT
procedure would be 511 and 389 for the Models 217 and 236; 399 and 299 for the Models 216,
220 and 226, 1023 and 751 for the Model 237 (with type-ahead buffer); or 1023 and 767 for the
Model 237 (with type-ahead buffer removed). These numbers are the numbers of pixels in the X
and the Y directions, respectively, for those computers.

In the next version of our progressive example. the only change is that the aspect ratio has been

altered so the whole screen has been used. The following statement was placed immediately
prior to the SET_WINDOW statement:

set_asrect (311 .:388)3

This program may be found on file **SinAspect™ on the DGLPRG: disc.

(A

- _J

This plot looks better than the last one; the whole screen is being used. There is still one
problem, though. We can see relative variations in the data. but what are the units being used?
We saw at the very beginning of the chapter that we were measuring voltage. but with the plot
at its current state. we don’t know if the height of the curve is signifying differences of micro-
volts, millivolts, megavolts, dozens of volts, or what? And we probably wouldn't want the text
(explaining units, etc.) to be written in the same area that the curve is in. as it could obstruct part
of the data curve. Therefore, we need to be able to specify a subset of the screen for plotting the
curve and put explanatory information outside this area. The next section tells you how to do
this.

Introduction to Graphics

Defining a Viewport
A viewport is a subset of the plotting area into which the window limits are linearly mapped. Itis
specified in virtual coordinates.

Virtual Coordinates and World Coordinates

Before we define a viewport, we need to know about the two different types of units which
exist. These two types of units are virtual display coordinates and world coordinates. Since a
viewport is a “window” onto which the world coordinates are mapped, and in order for
viewports to be predictable, they must be specified in units which are not dependent upon the
user’s graphical model—the world coordinates. Since world coordinates are associated with the
graphical model employed by the user, and virtual coordinates are associated with the display
device, it makes much more sense to use virtual coordinates when specifying the limits of a
viewport. (Note that world coordinates are set when specifying a window—they both start with
“w”’—and virtual coordinates are set when specifying a viewport—they both start with “v’’.)
Virtual coordinates always range from 0.0 to 1.0 in one direction, and 0.0 to a number dictated
by the aspect ratio in the other direction. A viewport is associated with the display device, rather
than the graphical model used in your program.

These are the most important characteristics of virtual coordinates:

® The lower left of the plotting area is always 0,0.

e Virtual coordinates are isotropic; that is, one unit in the X direction is the same distance as
one unit in the Y direction.

e Virtual coordinates are limited to the range O through 1. The maximum coordinate on one
side is 1, and the maximum coordinate on the other side is less than or equal to 1.

The following discussion assumes that the aspect ratio is set such that the whole screen is used:
511/389 for the Models 217 and 236; 399/299 for the Models 216, 220 and 226; or 1023/767 for
the Model 237. Since the height of the screen is less than the width of the screen, the longer edge is
in the X direction, therefore, Xmax in virtual coordinates is 1.0. If the screen had been higher than it
is wide, Ymax in virtual coordinates would have been 1.0. That was the easy part. Once you've
decided which edge is longer, and thus defined the units along that edge, you need to find out the
length of the shorter sides in virtual coordinates. Typically, these values will be known because you
explicitly specify the aspect ratio yourself. However, if you don’t know the aspect ratio (and
therefore the virtual coordinates maxima), you can interrogate the system with a call ot the INQ_
WS procedure®. This will be done in the next chapter. For now, though, we’ll just observe that the
virtual coordinate limits (for the entire screen, remember) are 0.0 to 1.0 in X, and 0.0 through
299/399 = 0.749373433584 (on the Models 216, 220 and 226), 0.0 through 389/511 =
0.761252446184 (on the Models 217 and 236), or 0.0 through 767/1023 = 0.749755620723 on
the Model 237).

1 The INQ.WS procedure is a DGL procedure through which you can find out various parameters of the graphics system.

13

14

Introduction to Graphics

Specifying the Viewport

The SET_VIEWPORT procedure sets up a transformation which will convert points in world
coordinates into points on the plotting surface. The call to SET_VIEWPORT in the following
program specifies that the lower left-hand corner of the viewport area is at 0.10,0.12 and the
upper right-hand corner is at 0.99.0.70.

set_viewrort{(0,10,0,98,0,12,0,7013

This is the area which the SET_WINDOW procedure affects. We will also draw a box around
the viewport limits by drawing the rectangle bounded by -1 and 1 in both the X and Y
directions. (The default window limits are — 1 to 1 in both directions.) It is done in this example
so you can see the area specified by the SET_VIEWPORT procedure call.

And here is the output from the next version of our progressive example (found on file
“SinViewpt”’ on the DGLPRG: disc). The only change is that a call to SET_VIEWPORT has
been placed immediately after the line calling SET_ASPECT.

()

Introduction to Graphics

Labelling a Plot

With the inclusion of the call to the SET_VIEWPORT procedure, we have enough room to
include labels on the plot. Typically, in a Y-vs-X plot like this, there is a title for the whole plot
centered at the top, a Y-axis title on the left edge, and a X-axis title at the bottom.

The DGL procedure GTEXT writes text onto the graphics screen. You can position the label by
calling MOVE to get to the point at which you want the label to be placed. It is the lower left
corner of the label which ends up at the point to which you moved. In other words, we will
move to the position on the screen at which we want the lower left corner of the text to be
placed.

Notice in the following plot that the Y-axis label on the left edge of the screen is created by
writing one letter at a time. We only need to move to the position of the first character in that
label because we terminate each one-character GTEXT call with a carriage return/linefeed. This
causes the pen to go one line down, ready for the next (one-character) line of text. (There is
another way to plot vertical labels; we’ll see it shortly.)

4)
VOLTAGE VARIANCE
Vv
(@
1
+
a
g
e
Time (seconds)
_ J
prodgram SinLabell{outpPut)i
import dgl_liby dgl_inqj {9et drarhics routines?}
const
CrtAddr= 33 {address of internal CRT}
ControlWord= 03 {device controli O for CRT}
var
ErrorReturn: inteders {variable for initialization outcomel
Strnd: strindgl713 {seven characters in ‘Voltade’}
Character: inteders {loor counter for labelling}
Wi inteders
Y reals
$include ‘DGLPRG:DataPoint’$ {function: vi=f(x) }
Fpaged [EREREREXRXENENRE R RN R RN RN RN R RN R R AR AR R R AR R R R ERE R AR RN}
bedin {body of prodram "SinlLabell"}
drarhics_inits {initialize drarhics svstem?}

displav_init(CrtAddrsControlWordsErrorReturn)i {which output device?}

15

16

Introduction to Graphics

if ErrorReturn=0 then bedin {outrput device initialization OR?}

set_aspect(511,389)1 {use the whole screen}
mouve(-0,454+0.9)1 {starting point for the titlel}
gtext ("VOLTAGE VARIANCE') 3 {label the Plot?
Strng:=‘Voltage’s {the v-axis label}
move(-0,93,0,3)1 {starting point for the v-axis title}
for Character:z=1 to strlen(Strng) do {follow every character.,..?

dtext(str(StrndsCharactersl)+chr{13)+chr(10)); {voewith a CR/LFY
movel-0,3y-0,8)1 {startind point for the x-axis labell}
dgtext('Time (seconds) ')} {x-axis labell
set.viewport (0,140,990, 12,0,7)1 {define subset of screen’
move(-14-1)3% line(l,y-1)3% line(i+1)% line(-1+1)3 line(-1,-103% A{frame?’
set_window(0,100,0,16+0,18) 3 {scale the window for the datal
for Xi=1 to 100 do bedin {100 Points totall

Yi=DataPoint ()1 {det a point from the functionl

if ¥=1 then move(XsY) {move to the first Point.,.}

else line(X YD)y {vvvand draw to all the rest}

ends {for X:=1 to 100}
endi {ErrorReturn=07}
draphics_terms {terminate the drarhics Packadel}
end, {program "SinlLabell"}

This gets the point across, but it would be nice if we could cause some labzls to be more
obvious by making them bigger; for example, on the main title. Also, you may want the Y-axis
title to be turned on its side, and not do the carriage return/line feed trick we did last time.

Setting Character Size

The DGL procedure SET_CHAR_SIZE sets two attributes' of all subsequent characters, namely
the width and height of the character cells. A character cell contains a character and some blank
space above, below, to the left of, and to the right of the character. This blank space allows
packing character cells together without making the characters illegible. The amount of blank

space depends, of course, on which character is contained in the cell. The values sent to
SET_CHAR_SIZE are expressed in world coordinates:

set_char_size{lWidth: Heidht}i

When a character size is selected. the width and height associated with a character cell are
defined for an unrotated character cell. Thus, when a character is rotated. its shape does not
change, even though its width (measured along the X axis) and height (measured along the Y
axis) are not the same directions as the display device’s axes.

The ability to specify character sizes in world coordinates is valuable when doing graphical
output in which the labels are 10 remain with the objects they describe. In these cases. the
characters are scaled using the same scaling as the objects drawn.

In the following program (program SinlLabelZ on a file by the same name on the DGLPRG:
disc), the character width and height are defined to be something on the order of Z*0 ., 04. The
reason that a 2 was used in these expressions is that the current (default) window limits were
—1to 1, for a distance of 2. The 0.04 comes from the fact that we wanted 4% of the window
distance in that direction.

1 An attribute. in this context. is a piece of information which helps define or describe some object.

Introduction to Graphics

Centering Labels

In that last program, the labels looked reasonably centered. This was only because the starting
point was arrived at in a hit-and-miss manner. The main characteristic of labels which makes it
difficult to center them is this: the reference point of a label is the lower-left corner of the label.
That is, the point you moved to just prior to writing the label will end up at the lower-left hand
corner of the label. If we want our labels to be centered, we must figure out how long each label
is, subtract half that length from the X position of where we want the center of the label to be
placed, and then write the label.

We know what the characters’ sizes are; we can set it with the SET_CHAR_SIZE procedure. We
can also determine how long the string of text to be labelled is. This is found by using the
standard procedure STRLEN. If you give it a string, it will return the length (in characters) of
that string.

Horizontal centering of a string, then, can be accomplished by subtracting the value returned by
the following expression from the desired X position of the center of the label':

(strlen(Text)*CharWidth)/2

Thus, if we want a label centered horizontally about the point ¥, and at a Y value of ¥, we could
say:

movel(X-(strlen(Text)*CharWidth)/2:¥)}

Setting the Label’s Direction

Quite often, labels need to be at some other angle than horizontal. We saw a few pages ago that
a vertical label could be done—albeit somewhat clumsily—by labelling one horizontal character
at a time, and following each by a carriage return/line feed. What we need is a way to specify
that we want labels to be plotted at whatever angle we specify.

Through the DGL procedure SET_TEXT_ROT, you can specify the amount of rotation you
want the label to undergo. However, you must specify this in two pieces: the X displacement
and the Y displacement. For example:

set_text_rot{Z2,-1)3 Label goes down and right; a —26.57° angle.
set_text_rot(1,0);3 Label is horizontal; default direction.
set_text_rot(87,87)3 Label goes up and right at a 45° angle.
set_text_rot(0Q,5);: Vertical label; ascending.
set_text_rot{-1,0)3 Upside-down label.

The SET_TEXT_ROT procedure deals only with the ratio of the run and rise parameters. Thus,
multiplying both parameters by the same number will not change the angle at which the
subsequent labels are written. The third example above, which sets both the run and the rise to
87, could have used any two numbers as parameters, as long as they equaled each other.
Going 87 units up for every 87 units to the right yields the same angle as going 19 units up for
every 19 units to the right, etc.

1 Thisis quite close to the truth, but is an approximation. There is an inter-character gap. which is the space caused by the fact that a character is
placed inside a character cell, and it is complicated because the amount of space on the left side of a character is different from the amount of
space on the right. See the Character Cell section in the next chapter.

17

18 Introduction to Graphics

Any particular angle you want can be passed to the SET_TEXT_ROT procedure by operating
on the angle with the cosine and sine functions. For example, to cause labels to be written at an
angle of w/4 (a 45° angle), you could use the following statement. It assumes there is a constant
called Pi which has a value approximately equal to 3.1415926535897.

set_text_rot{cos(Pi/1B0%45),,sin(Pi/180%43));3

With these two statements, we can make a marked improvement in the quality of the output.
The next version of our progressive example uses them.

' A A
VOLTAGE VARIANCE
©
o))
©
)
(o}
>
9 Time (seconds) y
prodgram SinLabelZ(outpPut)i
import d91_liby dgl_inas {det drarhics routines?’
const
CrtAddr= 33 {address of internal CRT}
ControlWord= 03 {device contrals O for CRT}
var
CharWidth: reals {width of character in world coords?
CharHeight: reals {heidht of character in world coords}
Text: string[2013% {temporary holding place for text}
ErrorReturn: inteders {variable for initialization outcomel
W intederi
Y reals
$include ‘DGLPRG:DataPoint’$ {function: vi=f(x) }
SPaged [HNFEEFEERREERRRER R R RN RN RR AR R RRRRRRRR R R R R R R RN RN RN R RN)
bedin {body of prodram "SinlLabel2"}
grarhics_inits} {initialize the drarhics svstem}

diseplay_init(CrtAddrsControlWord ErrorReturn)i {which output device?}

if ErrorReturn=0 then hbedin
set_aspect(511,389)3
CharWidth:=2%0,043
CharHeight:=2%0,08)
set_char.size(CharWidth;CharHeight)i

Text:='VOLTAGE VARIANCE '}

Introduction to Graphics

{outrput device initialization OK?}
{use the whole screen?’

{char width: 4% of screen width}
{char height: B% of screen heidht}
{install character size}

{define the text to be labelled}

move(-{(strlen(Text)*CharWidth)/2+0,9)3i{d0 to start point for centered lakel}

dgtext{Text)s

set_text.rot(0y1)3
CharWidth:=2%#0,0253
CharHeidght:=2%0,043
set_char_size(CharWidthsCharHeight)}
Text:='Upltade's

move(-0,8s-(strlen(Text)*CharWidth)/2)3

dtext(Text)}
set_text_rot(1,0)3
Text:='Time (seconds) '’}

move(-(strlen(Text)*CharWidth)/2,-0,92)1

dtext(Text)i
set_viewrort(0,1,0,99,0,12,0,7)%
moue(-14-1)4% line(-14+1)3 line(14+1)3
set_window(0,100,0,16,0,18)3

line(ls-1)3

{label the text}

{vertical labels?}

{char width: 2.,3% of screen
{char height: 4% of screen
{install character size?}
{define the text to be labelled}

{start point of centered label?}
{label the text?}

{horizontal labels?

{define the text to be labelled}

{start point ef centered label}
{label the text}

{define subset of screen}

line(-13-1)3% {framel

{scale the window for the data}

width}
heidht}

{100 Points totall

{det a point from the functionl}
{move to the first point.,..}
{vivand draw to all the rest}

for X:=1 to 100 do bedin
Yi=DataPoint (X))}
if X=1 then move(X,Y)
else line(X, YY)
ends {for ¥:i=1 to 100}
endi {ErrorReturn=07}
drarhics_terms
end.

Bold Labels

Many times it’s nice to have the most important titles not only in large letters, but bold letters, to
make them stand out even more. It is possible to achieve this effect by plotting the label several
times, moving the label’s starting position just slightly each time. In the following version of the
program (on file ““SinLabel3” on your DGLPRG : disc), notice the FOR loop used when labelling
the main title. The loop variable, ¥, goes from — 3 to 3. This is the offset in the X direction of the
label’s starting position. |

{terminate the drarhics rpackagel
{prodram "SinLabel2"}

The only change in the program was that the statements labelling the main title:

move(~(strlen{Text)*¥CharWidth)/2,0,9)3
gtext(Text)y

‘were replaced by the following:

Cfor HKi=-3 to 3 do bedin
mouve{-(strlen(Text)*¥CharWidth)/2+X*0,002,0,9);
dtext(Text) i

ends’

This method can also be used for offsetting in the Y direction. Or, offset both X and Y. This will
give you characters which are thick in a diagonal direction, which makes them look like they are
coming out of the page at you. However, a more typical bolding is produced by offsetting only
in the X direction.

19

20

Introduction to Graphics

[VOLTAGE VARIANCE A

Voltage

Time (seconds)

. _J

Now we know what we are measuring—voltage vs. time-—but we still do not know the units
being used. What we need is an X-axis and a Y-axis, to show us where to put the numbers.

Axes and Tick Marks

When drawing axes, they are typically composed of a straight line defining the axis itself, and
short lines, perpendicular to the axes, to indicate the spacing of units. These short lines are
called tick marks. Usually, the tick marks are grouped into multiples of a nice round number so
as to make it easier to understand where the multiples are. These groups are delimited by
causing the first tick mark in each group to be larger than the rest.

When writing an axis routine, it is almost always desirable to cause a major tick mark to be
coincident with the other axis. For example, if you draw an X axis and select a major tick count
of five, it would probably be undesirable to have a minor tick mark (say, two ticks to the right of
a major tick) cross the Y axis. This would mean that you would have to go three ticks to the right
of the Y axis to find a major tick, but only two ticks if you were going to the left.

Following are some sections of code that do the processing necessary for an axis; an X-axis in
this case. A Y-axis proceeds with similar steps. Assume the following variables are defined:

Spacing: The distance between tick marks on the axis.

Location: The Y-value of the X-axis.

Xmin, Xmax: The left and right ends of the X-axis, respectively.

Major: The number of tick marks to go before drawing a major tick mark. If
Major =5, every fifth tick mark will be major.

Maijsize: The length. in current units, of the major tick marks.

Minsize: The length, in current units, of the minor tick marks.

Introduction to Graphics 21

The first thing you would do is to draw the axis itself. Its length would be from ¥min to Xmax, and its
Y-position would be Location:

move (XminsLocation) s
line(XmaxsLocation)?i

If the lengths of the major and minor tick marks are Ma.isize and Minsize, then half those lengths
would be on each side of the axis. Rather than dividing by two at every tick, let's do the
divisions once and put the values into their own variables:

SemiMinsize:=Minsize*0,53
SemiMadsize:=Madjsize*0,D0}

We need to round the starting value down to the next major tick mark. The function being used
here is a user-defined rounding routine which can round down, up, or to the nearest multiple of
the specified value.

Ki=zRound2(Xmin Spacing*MadorDown) i

If you do not need or want to force a major tick mark to be at X=0, you could replace the
previous statement with the following, which forces a tick, not necessarily a major one, to be at
zero:

Ki=RoundZ2(XminsSpacing sDown) 3§

Or, you may not want to round at all; you may want to start making tick marks at the value of
¥min no matter what its value—whether it’s a nice round number or not. In this case, replace the
previous statement with this:

Now we need to draw all the tick marks. The distance between consecutive ticks is defined by
Sracing. Every Nth tick will be a major tick, where N is the current value of Ma.Jor. A counter (of
type INTEGER or some subrange) will be employed which will be incremented at every itera-
tion and will wrap around. Every time the counter’s value is zero, it is time for another major tick
mark.

Counter:=01
while X<=Xmax do bedin
if Counter=0 then bedin
move(X Location-SemiMadsize) s
line(X+Location+tSemiMadsize)i
end {Counter=07}
else bedin
move(XiLocation-SemiMinsize)i
line(X:Location+SemiMinsize)s
endi d{else bedin}
Counter:={Counter+l) mod Madori
Ki=X+SpPacind}
endi {while}

22 Introduction to Graphics

Here is the next version of our progressive example. It draws both an X and a Y axis. For a
complete listing of this program, see the Appendix.

(VOL TAGE VARTANCE)
)
o
rU -
P
o
>
FHHH T
Time (seconds)
_ J
prodgram SinAxesl(output)s
import d9l.liby daloing: {det drarhics routines?
const
CrtAddr= 31 {address of internal CRT}
ComtrolWord= 03 {device controli O for CRT?
tvee
RoundTvpe= (Upy Downs Near)i {used by procedure Round2}
var
CharWidth: reali {width of char in world coords?
CharHeidht: reals {height of char in world coords?}
Text: stringl2013 {temporary holding place for text}
ErrorReturn: inteders {variable for initialization outcomel
i inteders
Y reals
$include ‘DGLPRG:DataPoint’$ {functiaon: vi=f{x) }

L]
®
L]
Procedures %axis and Yaxis, and function Round2 go here.
L]
L]

begin {bodv of pProdram "SinAxesi"}
dgrarhics.init: {initialize the drarhics svsteml
displav_init(CrtAddr+ControlMordsErrorReturn)i {which output device?}
if ErrorReturn=0 then bedin {output device initialization ORT}
set_aspect(511,3B89)3 {use the whole screen?’
CharWidth:=2%0,043 {char width: 4% of screen width}
CharHeidght:=2%0,083 {char height: 4% of screen heidht?}
set_char_size(CharWidthsCharHeight)i {install character sizel
Text:='UOLTAGE VARIANCE '3 {define text to be labelled?}
for X:=-3 to 3 do bedin {make "bold" label}
move(-(strlen(Text)*CharWidth)/2+X*0,002,0,9)3 {center labell}
dtext(Text)s {label the text?}

ends

set._text_rot{0s+1)3
CharWidth:=2%0,0253
CharHeight:=2%0,04}
set.char_size(CharWidthsCharHeidht)}
Text:i='Yoltade’)

move(-0,9s-(strlen(Text)*Charlidth)/2)3

gtext(Text)
Text:='Time (seconds)’}
set.text_rot(1,0)3

movel(-(strlen{(Text)*CharWidth)/2y-0,92)3

dtext(Text)s
set_viewPort(0,1,0,9940,12,0,7)3
move(-1,-1)3 line(-1+1)3 line(141)3
set_window(0,1004,0,16,0,18)1
Haxis(1:0,16,-304150+3,0,001,0,0005)3

line(ls-1)3

Introduction to Graphics

{vertical labels}

{char width: 2,57 of screen width?}
{char height: 4% of screen height}
{install character size’}

{define the text to be labelled}

{start point of centered label}
{label the text}

{define the text to be labelled}
{horizontal labels?

{start Point of centered labell}
{label the text}

{define subset of screen}

line(-1+-1)3% {framel

{scale the window for the datal

{draw the x-axis}

{draw the v-axis}

{100 pPoints totall}

{det a point from the function}
{move to the first point.,..}
{vovand draw to all the rest}

Yaxis(0,00140,0,140,2+542+1)3
for Xi=1 to 100 do bedin
Yi=DataPoint(X)3
if ¥=1 then move(¥s¥)
glse line(X,Y¥)3
ends {for X:=1 to 100}
endi {ErrorReturn=07}
drarhics_terms
end,

{terminate the drarhics packagel

{prodram "SinAxesl"}

This version is better than the last; it has axes and we can see the units they’re delimiting, but
obviously, there is a big problem. Not only do the axes and tick marks appear where we want
them, they are also many places where we don’t want them. We want the axes to stop at the
limits of the window, and we also want the tick marks to extend only toward the interior of the
graph. What we want is clipping.

Clipping Lines

Clipping is a method of defining edges of a plotting area, and drawing things which are cut off at
those defined edges if they hang over. This is analogous to describing a large drawing on a huge
sheet of paper, and but only drawing those parts which are inside some rectangle. What this
means is that when clipping is invoked, everything inside the rectangle should look identical to
the image (inside the same rectangle) created when clipping is not invoked. Only the things
outside the rectangle are affected. Clipping affects lines, text, markers, and polygons.

Clipping a line consists of determining how much of a line is within the clipping limits, and then
drawing only the visible part. There are four distinct cases:

Clipping Limits
® The line is contained entirely within the clip limits. /
Therefore, using the original endpoints, draw the entire .
line.
® One endpoint is within the clip limits, but the other one ?
is outside. Therefore, find the intersection between the . 1
. *—]
line to be clipped and all clip limits which intersect it
(two at the most). Draw the line from the visible en- ~J
dpoint to the closest edge-intersection. e

23

24

Introduction to Graphics

e Both endpoints are outside the clip limits, but some 2 7
middle part of the line is visible. Do the same operation /
as for the single invisible endpoint above, but for both '
endpoints. {
‘\\\
e The entire line is invisible. Reject it; do nothing. X '

DGL clips images at the display limits—those limits set by the SET_DISPLAY_LIM routine.
Often, however, you may wish to clip at other boundaries than the logical display limits. In
addition, the parameters for SET_DISPLAY_LIM are expressed in millimeters. Millimeters are
quite adequate for setting display limits, but are usually clumsy to work with when the rest of the
graph is in world coordinates. But there is a way to do it. There is a DGL routine called
CONVERT_WTODMM, which converts world coordinates to millimeters on the display surface.
However, SET_DISPLAY_LIM may reset the view surface limits, so some redefinition of other
parameters may be necessary. Thus. you can clip using these two routines in conjunction with
each other.

A User-Defined Clipping Algorithm

In the appendix is a listing of the program “SinClip’’, which uses a clipping routine' called
ClirDraw. Also included is a routine to which you pass the desired clip limits: ClirLimit.
The clip limits may be inside, outside. or coincident with the window edges. After the clipping
limits have been defined, a line is passed to the clipping routine. Both endpoints of a line must
be known, because intersections between the line being drawn and the edges of the clipping
area must be calculated.

These two clipping-related routines allow lines to be clipped outside of any desired rectangular
area. However, the axis routines used in the last demonstration program must be modified to
call the clipping routine. In addition. there is another modification which would be very conve-
nient to have:

It would be nice if we didn’t have to pass the Xmin and Xmax or Ymin and Ymax to their
respective routines so they would know where to start drawing tick marks. To do this, we’ll just
use the global variables Clirimin, ClirXmax, ClirYmin, Clir¥max. Then we'll round the
lower window limits down to the next value which would have a major tick mark. We round to a
major tick mark because (in this case) we want the value of 0 to have a major tick, regardless of
whether zero is on the plotting surface.

Installing the modified axis routines results in the following plot. The program may be found on
file “*SinClip”’ on the DGLPRG: disc.

1 This clipping routine was adapted from a routine on page 66 of the excellent book:

Principles of Interactive Computer Graphics, Williem M. Newman and Robert F. Sproull. Second Edition, 1979, McGraw-Hill

Introduction to Graphics

_

Vo ltage

VOL TAGE

VARIANCE

Time

(seconds)

J

This is a good general-purpose clipping routine which is independent of the output device used,
and of the DGL implementation used. But as we noted earlier, only lines sent to the CLIP-
DRAW routine were clipped, and therefore text, written by a call to GTEXT, in addition to
markers and polygons, were not clipped.

These axes look much better. Now we know where the numbers should be placed on the axes.
Let’s learn a little about labelling numbers.

Labelling Axes

In the process of labelling axes, we need to know how to convert numbers to strings which look just
like the numbers. The reason for this is that the labelling procedure GTEXT can only accept a string
for an input parameter.

There is a standard procedure in Series 200 Pascal called STRWRITE. This allows you to use
regular output formats, but, instead of sending the data to a file, the data is put into a string variable.
The same format-controlling numbers after colons that can be used for WRITELN can be used for
STRWRITE. Let’s assume there are three variables defined:

e A string variable Strny. This variable will receive the
string version of the value converted from REAL,;

® An integer 1. This is merely for a value returned from
the STRWRITE routine. It indicates the location of the
next unused character in the string;

e And a REAL variable called X which we want to con-
vert to a string.

The actual conversion would be accomplished through the following statement:
strwrite(Strngsl,I1,X:6:4)3%
The :G after the ¥ tells the computer that the entire field should be six characters wide. This

includes the digits to the left of the decimal point, the decimal point itself, and the characters to
the right of the decimal point.

25

26 Introduction to Graphics

The : 4 tells the computer that there are to be four digits to the right of the decimal point.

In this program also, we center the labels horizontally by subtracting half the length of the labels
from the desired position for the center of the label.

([VOL TAGE VARTANCE)
B.IBBB_
@.1775F
2.1758
we.1725k-
&)
Il
4+ @.1700
0
> 8.1675f
0.1850
a.1625F
G.IGBG: I FFETY ITEVE ENUTE FUSWI FEURY FRTEY SNUTY FRUPI SRR TE FUTVE PUTTE FRURY FERTS FRUTY FEVEY FEREY FRUTY FUUTY FUTT
10 20 3e 48 50 60 7@ 8@ 98 100
Time (seconds)
_ J
prodgram SinAxesZ2(outrPut)
import dgl_lihbs {det drarhics routines}’
const
CrtAddr= 313 {address of internal CRT?}
ControlWord= 043 {device corntrols O for CRTY}
type
RoundTvpes= (Ups Downys Near)s {used by function Round2}
var
CharWidth: reali {width of char is world coords}
CharHeight: reali {height of char is world coords}
Text: stringf2013 {temporarvy holding place for text}
ErrorReturn: inteders fvariable for initialization outcomel
I: inteders {return variable from STRWRITE}
W intederi
Y reals
ClipXmins ClipXmax: reals {esoft clip limits in x2}
ClipYminy ClirYmax: reals {soft clirp limits in v}

$include ‘DGLPRG:DataPoint’$% {function: vi=f(x) }

Introduction to Graphics 27

$Paged {EEEFERRNFERRERERRRERRRER AR RER R RN AR RERRER RN RN ERRRRERRRE R XA RN AR}
procedure ClipLimit{(¥mins Xmax: Ymins ¥Ymax: real)s

e }

{ This procedure defines the four global variables which specify where the }

{ soft cliep limits are, }

{ m e e e e e e e e e e e e e m e e e }

bedin {bodvy of procedure "ClipLimit"?}

if HXmin<Xmax thewn bedin {\ }
ClipKmins=Xmini { A\ Force the minimum soft 1}
ClirXmax:=Xmax} { \ clirp limit in X to be ¥

end { \ the smaller of the two }

else bedin { /A values passed into }
Clipmins=Xmaxi { / the procedure. }
ClipXmax:=Xmini { 7/ +

endi {7/ ¥

if ¥Ymin<Ymax then bedin {\ }
ClipYminz=Ymini { A\ Force the minimum soft %
ClirYmaxis=Ymaxi { \ clie limit in Y to be }

end { \ the smaller of the two }

else bedin { / ¥ values passed into }
ClipYmins=Ymaxi { / the procedure, }
ClirYmax:=Ymini { 7 ¥

end?’ {7/ }

ends {procedure "ClipLimit"}

GPagRd {EREFRERREFER AR RRN R RRN R R RRRRRRRRRRE RN R AR RRR R R RN R R RN RN RRRR)
procedure ClieDraw(Xls Y1, X2y Y21 real)s

L R et }
{ This procedure takes the endpoints of a lines and clips it, The soft }
{ clirp limits are the real global variables ClipXminy ClipXmaxs Clip¥min +
{ and ClipYmax. These mav be defined throudh the procedure ClirLimit, b
e e }
label
13
type
Edges= (LeftsRightTorsBottom)i {possible eddes to cross}
OutO0fBounds= set of Eddessi {set of eddes crossed?’
var
Outs0utls0ut2:0utOfBoundss
Ky Yo reals
R e ¥
procedure Code(¥s Y: reals var Outs OutOfBounds)i
bedin {nested procedure "Code"}
Out:=[13 {null set}
if xsClipXmin then Qut:=[Cleft] {off left edge?}
else if x:ClipXmax then Outi=[rightli {off ridht edger}
if v<Clip¥min then Out:=0ut+lbottom] {off the bottom?}

else if v ClipYmax then Out:=0ut+ltorls {off the top?}
ends {nested procedure "Code"}

28 Introduction to Graphics

{ o e e -}
bedin {body of procedure "ClipDraw"}
Code(¥1¥1+0utl)s {fidgure status of pPoint 1}
Code(X2,4¥2,0ut2)3 {fidgure status of Point 2}
while (Outl<>[1) or (QutZ24:[1) do bedin {loorp while either Point out of randel
if (Dutl*DutL “:[1 then doto 13 {if intersection mon-nulls no linel
if Outl<>L[1 then Dut:=0utl
else Out:=0ut2s {0ut is the non-empty onel
if left in Dnt then begin {it crosses the left eddel
vasY i+ (Y2-Y) (Clirpkmin-X1)/ (X2-X1)y{adiust value of v apPropriatelv’
x:“Clanmlu» {new x is left edgel
end {left in Out?}
else if right in Out then begin {it crosses right eddel}
yi=Y I+ (Y2-Y1)®(ClirpHmax-H1)/(X2-X1)3i{adjust value of v arppropriatelv}
x:=ClirXmaxs {new x is ridht edgel}
end {right in Out?}
else if bottom in Out then begdin {it crosses the bottom eddel
X=X I+ (K2- XD *(ClipYmin-Y¥1)/C(Y2-Y1)3{addust value of x approrriatelv?
yi=ClipYmini {new v is bottom eddel
end {bottom in Out?}
else if tor in Out then bedin {it crosses the top edde}
Xz AL+ (H2-H1D)*#(ClipYmax-Y1)/(¥Y2-¥1)i{addust value of x appropriatelv?}
vi=ClipYmaxs {new v is top eddel}

endd {torp in Out?}
if Out=0ut!l then bedin
Ale=xs Yile=vi Code{xsysDutl)s {redefine first end Point}
end {0ut=0uti?}
else bedin
K2i=x3 Y2i=vi Code(xsys0ut2)s {redefine second end Point}
endy d{else bedin’}
ends {while}

move(xlvl)s {if we det to this points the line,.,}
line(x2+v2)3 {+vsis completely visibley so draw it}
l: ends {procedure "CliPDraw"}

FPaged {HEEREEFERERRER R R R R AR RN RN RN AR R RERRR N RN R R R R R R R RN RE RN RERRRN)
function RoundZ(N, M: reali Mode: RoundTyre): reall

D T }
{ This function rounds "“N" to the nearest "M"s according to "Mode"., This ¥
{ function works only when the ardument is in the rande of MININT.,,MAXINT, 1}
S T L L T T e e }
const

epsilon= 1E-103 {roundoff error fudde factor}
var

Rounded: reals {temporary holdind areal

Nedative: booleans {flag: "It is nedative?"}
bedin {body of "Round2"}
Nedgative:=(N<O,0)3 {is the number nedative?}
if Nedative then bedin

Ni=abs(N)3 {work with a positive numberl

if Mode=Up then Mode:=Douwn {if number is nedatives 444}

else if Mode=Down then Mode:=Up3 {+yv.reverse up and down

end i

Introduction to Graphics

case Mode of {should we round the number.,.+?
Down: Rounded:=trunc{N/M)*M; © {y+eleft on the number line?}
Up: bedin
Rounded:=N/M3 {+vvsridht on the number line?}

if abs(Rounded-round(Rounded))*ersilon then
Rounded:=(trunc{(Rounded)+1,0)*M

else
Rounded:=trunc(Rounded) *M}
ends
Near: Rounded:=trunc(N/M+M*0,3)*M3 {+isto the nearest multirle?}

endy {case}
if Negative then Rounded:=-Roundeds {reinstate the sidgn}
Round2:=Rounded} {assidgn to function namel
end’ {function "Round2"}

SPagRE L FFEEERERRNRRRERRFRRERERRRRRERERE R R R RN RN RN RN RN AR R AR R R RRRRRRRRRRNRR)
procedure XaxisClip(Spacindg, Location: reali Mador: inteders
MadsizesMinsize: real)i

{ This procedure draws an X-axis at any intersection point on the plotting }
{ surface., Parameters are as follows: }
{ Spacing: The distance between tick marKs on the axis. }
{ Location: The Y-uvalue of the X-axis. ¥
{ Madors: The number of tick marKs to de before drawing a mador tick b
{ mark, If Major=5, every fifth tick mark will be mador, }
{ Madsizes: The lendgths in world unitss of the mador tick marks. }
{ Minsize: The lendths in world unitss of the minor tick marKks., ¥
e e L R P ¥
var

K realj {¥ position of tick marks}

SemiMadsize: reali {half of mador tick size}

SemiMinsize: reali {half of minor tick sizel

Counter: inteders? {keers track of when to do maJor ticks?
bedin {body of procedure "XaxisCliep"}
SemiMadsize:=Ma.jSize*0,53 {calculate half of mador ticKk size}
SemiMinsize:=MinSizex*0,5] {calculate half of minor tick sizel
Counter:=03j {start with a mador ticK}

ClipDraw(Clir¥minsLocationsClirXmaxsLocation)i {draw the X-axis itself}
¥i=RoundZ(ClipXmin5rpacing*MadorsDown)3 {round to next lower mador?

while X<=ClipXmax do bedin {loor until greater than CliPpXmax?}
if Counter=0 then {do a mador tick mark?}
ClipDraw(¥s+Location-SemiMadsize XsLocation+SemiMadsize)
else
ClipDraw{XsLocation-SemiMinsize X+Location+SemiMinsize)s {do minor tick}
Counter:=(Counter+l) mod Madori {keep track of which length tick to do}
Kiz=X+SpPacingdi {90 to next tick position}’

endi {while}
endi {procedure "XaxisClip"}

29

30

Introduction to Graphics

SPaged (EFRERRERNERR IR R F R R R R ERRRR R F RN RN RN RN R R ER RN R R R IR RERR RN
procedure YaxisClip(Sepacings Location: reali Mador: inteders
Madsize» Minsize: real)i

{ This procedure draws an Y-axis at any intersection point on the plotting }
{ surface., Parameters are as follows: +
{ Spacing: The distance between tick marks on the axis. }
{ Location: The X-value of the Y-axis, +
{ Mador: The number of tick marks to de before drawindg a mador tichk +
{ marks If Mador=5y every fifth tick mark will be mador, +
{ Madsize: The lendgthy in world unitss of the mador tick marks, +
{ Minsize: The lendthy in world unitsy of the minor tick marks, +
D T e e T P PR }
var

Y reals ¥ position of tick marKs?}

SemiMadsize: reals {half of mador tick size}

SemiMinsize: real’ {half of minor tick size}

Counter: inteders {keeps track of when to do mador ticKks}
bedin {bkody of procedure "YaxisClier"}
SemiMadsize:=Majsize*0,5} {calculate half of mador tick sizel
SemiMinsize:r=Minsize*(,53 {calculate half of minor tick sizel
Counter:=03 {start with a mador ticK}

ClirDraw(Locations»Clir¥YminsLocationsClirYmax)3
Yi=RoundZ(ClirYminsSrpacing*MadorDown) s {round to next lower mador}

while Y<=ClirYmax do bedin {loop until dreater than Ymax}
if Counter=0 then {should we do a mador tick?}
ClirDraw(lLocation-SemiMadsizesY Location+SemiMadsizeY)
else
ClieDraw(lLocation-SemiMinsizesYLocation+SemiMinsizes¥) s
Counter:=(Counter+l) mod Madors {keer track of which size tick to do}
Yi=Y+Spacings L. {90 to next tick position’}

endi {whilel}
ends {procedure "YaxisClir"}

$rade$
bedin
graphics.init}

displav_init(CrtAddrsControlWordsErrorReturn)s

if ErrorReturn=0 then bedin
set_aspect(511,389)1
CharWidth:=2%0,04%
CharHeight:=2#0,08}
set_char_size(CharWidth CharHeight)}
Text:='UOLTAGE VARIANCE'3
for X:=-3 to 3 do begin

move(-(strien{Text)*CharWidth)/2+X*0,002,0,9)}

dgtext{Text)s
ends
set_text.rot{Q,1)3
CharWidth:=2%0,0253
CharHeight:=2%0,041
set_char_size(CharWidth:CharHeight)}
Text:='Voltade’s

move(-0,97s-(strlen(Text)*CharWidth)/2)3

gtext(Text)s
Text:='Time (seconds) '3
set_text.rot(1,0)3

move(-(strlen(Text)*¥CharWidth)/2,-0,92)3

dtext(Text)}
set_viewport(0.,1,0,899,0,12+0,7)1
move(-1,-1)3% line(-14+1)% line(1l.+1)3
set_window(0s10040,16,0.,18)3
ClipLimit(0,10040,16:0,18)3

HaxisClirp(1,0,16+5+0,0008,0,0004)5

YaxisClip{0, Q005404392413 o

CharWidth:=1,33 :

CharHeight:=0,00083

set_char_size(CharWidthsCharHeight)}

Text:=''3

for X:=0 to 10 do bedin
strwrite(Text sl I X*10:0)3

moue(X*lO-(strlen(Text)*CharNidth){Z,0.1593)i

dgtext(Text)s
endi {for x}
Yi=0,163%
repeat
strurite(Text 1o XsYiB:d4) 3
move(-B,Y-0,0002)3
gtext(Text)s
YizY+0,00253
until Y>0.183%
for Xi=i to 100 do bedin
Yi=DataPoint(X)3
if H=1 then move(X,»Y)
else line(X,¥)1
endy {for X:=1 to 100}
endy {ErrorReturn=07}
drarhics_termi
end.,

line(is-1)3

. {char

Introduction to Graphics

{RRERERREREERRRERRFEREF RN R RRE R AR R R R RREEREEEX R E AR R RN RS ¥

{bodv of prodram "SinAxes2"}
{initialize the graphics svstem?
{which output device?}
{output device initialization OK7?}
{use the whole screen?

{char width: 4% of screen width?}
{char height: 4% of screen heidht}
{install character size}

{define text to be labelled}

{make "bold" labell}

{center label}
{label the text}

. {vertical labels}

{char width: 2.5% of screen width?
{char heidht: 4% of screen height?}
{install char size?}

{define text to be labelled}

{start point of centered labell}
{label the text}

{define text to be labelled}
{horizontal labels}

{start point of centered labell}
{label the text}

{define subset of the screen}
line(-1,-1)% {frame?’

{scale the window for the datal
{define the soft clir limits?

{draw the clirped X-axis?}

{draw the clirped Y-axis?}

width: 1.3 user X units widel}
{char height: ,0Q00B user Y units hidh}
{install character size}

{erase previous definitions of string}
{elevern X labels}

{convert number to stringl

{center the labell}
{label the text}

{starting Y position for Y labels?}

{convert number to stringl
{center the text verticallvy?}
{label the text?}

{next Y position?

{terminating condition}

{100 pPoints total}

{9et a point from the function}
{move to the first point,..}
{+vivand draw to all the rest}

{terminate the drarhics rPackadel
{prodram "SinAxesZ"}

31

32 Introduction to Graphics

Notice that even though the clip limits were still active when the axis labels were written, the text
(whose characters are merely a series of short lines) was not clipped. This is because the
GTEXT procedure does not call the user-defined clipping routine CLIPDRAW, it calls the DGL
procedures MOVE and LINE. Thus clipping on labelled text is only done at the hard clip
limits—the edges of the plotting surface.

This is the final version of our progressive example. It is the version which created the initial
display at the beginning of the chapter.

Chapter

2

Miscellaneous Graphics Concepts

In the last chapter we discussed the more elementary graphics operations. In this chapter, we will
discuss how to use some of those concepts more fluently, along with several other graphics
operations.

As in the last chapter, the demonstration programs in this chapter are stored for your convenience
on the DGLPRG: disc which was shipped with this manual. You are encouraged to run these
programs while you are reading the manual, as they will make understanding the concepts
much easier.

Setting the Display Limits
It is possible to define a subarea of the entire display surface by calling the DGL procedure

SET_DISPLAY_LIM. The area thus defined is the area in which a subarea can be specified by the
SET_ASPECT procedure.

The parameters passed to SET_DISPLAY_LIM are expressed in millimeters. An example call
would be:

set_displav_lim(40,3,100,30,:99+Error)}

This would set the logical limits of the display device to an area whose:

o left edge is 40.5 millimeters from the physical left edge of the display device;

o right edge is 100 millimeters from the physical left edge of the display device;

® bottom edge is 30 millimeters from the physical bottom edge of the display device;
e top edge is 99 millimeters from the physical bottom edge of the display device.

If the integer variable Error comes back with a value of 0, no error occurred. An error occurs if
either the minimum X or Y is greater than the maximum X or Y, or if the requested area is even
partially outside the physical display limits. In either case, the call is ignored and the variable
Error is returned non-zero.

33

34

Miscellaneous Graphics Concepts

More on Defining a Viewport

In the last chapter it was mentioned that the SET_VIEWPORT procedure defined a subset of the
screen in which to plot. More precisely, the SET_VIEWPORT procedure defines a rectangular area
into which the SET_WINDOW coordinates will be mapped. That is, the left edge of the window will
be placed upon the left edge of the viewport, the right edge of the window will be placed upon the
right edge of the viewport, and the same will happen with the bottom and the top edges.

Assuming that the SET_ASPECT procedure has been invoked to make use of the entire screen, the
screen has default edge values in the virtual display coordinates of 0.0 through 1.0 in the X
direction, and 0.0 through 299/399 = 0.75 (for the Models 216, 220 and 226), 0.0 through
389/511 = 0.76 (for the Models 217 and 236), or 0.0 through 767/1023 = 0.75 (for the Model
237) in the Y direction. The length of a unit in virtual coordinates is defined as *‘the length of one of
the longer edges of the plotting area.” To recap the important characteristics of virtual coordinates:

® The lower left of the plotting area is 0,0.

e Virtual coordinates are isotropic; that is, one unit in the X direction is the same distance as one
unit in the Y direction.

e Virtual coordinates are limited to the range O through 1. The maximum coordinate on one side
is 1, and the maximum coordinate on the other side is less than or equal to 1.

As we mentioned in the last chapter, it is trivial to determine the longer edge of the screen in virtual
coordinates, but substantially more involved to calculate the length of the shorter edge in virtual
coordinates. Since the height of the screen is shorter than the width of the screen, the longer edge is
in the X direction; therefore, the maximum X in virtual coordinates is 1.0. If the screen had been
higher than it is wide, the maximum Y in virtual coordinates would have been 1.0. Now for the
interesting part.

Remember that virtual coordinates are isotropic: X and Y units are the same length. This means that
the length in virtual coordinate units of the shorter edges of the plotting surface can be determined
from the aspect ratio of the plotting surface. The aspect ratio is the ratio of width to height of the
plotting surface. Thus, if the plotting area is wider than it is high, the ratio would be greater than
one. If the plotting area is higher than it is wide, the ratio would be less than one, and if the plotting
area were perfectly square, the ratio would be 1. You can determine the aspect ratios of both the
virtual display and the logical limits of the plotting surface by calling the INQ_WS procedure with
operation selector 254:

const
AspectRatio= 2545 {mnemonic better than madic number?
type
RatioTypres= (YirtualDisplavyslLodicalbimits)s
RatioTvpe= array [RatioTvrpes] of reall
var
Pac: packed array [1,+1] of chars { \ These are the sundries }
Tarrav: array [1+,4+11 of inteders { VN needed by the call to ¥
Ratios: RatioTvres { /7 "ina_ws". }
Error: inteders {7/ }
ina_ws(AspectRatios0s042PacylarraysRatiossError)? cr/if Error<:0

v

then cr/if writeln(’Error ‘sError:0;, in determining aspect ratio.)3

Miscellaneous Graphics Concepts

The user can now use RatiolVirtualDisplar] and RatiollogicallLimits] to determine what
values are used to set the aspect ratio. (For more information on the INQ_WS procedure, look
up this procedure in Appendix B.)

Usually, however, the user knows the aspect ratio because he explicitly set it at the beginning of the
program, using the SET_ASPECT procedure.

Using the value for the aspect ratio, we can derive a statement which is almost indispensible when
writing a general-purpose statement for calling the SET_VIEWPORT procedure. Assuming the
aspect ratio is contained in a variable called AsrectRatio:

if AspectRatio»1+0 then bedin
MaxWirtXe=1,03
MaxVirt¥Y:=1/AspectRatio

end

else bhedin
MaxVirtX:=AspectRatios
MaxVWirt¥:=1.,0

endi

These statements define the maximum X and maximum Y in virtual coordinate units. This will
work no matter what plotting device you are using. Now that we have MaxVirtX and
MaxVirtY defined, we have complete control of the subset we want on the plotting surface.
Suppose we want:

e the left edge of the viewport to be 10% of the hard clip limit' width from the left edge,
e the right edge of the viewport to be 1% of the hard clip limit width from the right edge,

e the bottom edge of the viewport to be 15% of the hard clip limit height from the bottom,
and

e the top edge of the viewport to be 10% of the hard clip limit height from the top.

We would specify:

LeftEddge:=0,1%MaxVirtki

RightEdde:=0,99%MaxVirtXi

BottomEdde:=0,15*%MaxVirtYi

TorEdde:=0,9%MaxVirtYs
SET_VIEWPORT(LeftEdde sRightEdde sBottomEdge sTopEdde) }

1 Hard clip limits are those limits set by the SET_DISPLAY_LIM procedure.

35

36 Miscellaneous Graphics Concepts

Calculating Window Limits

In our progressive example in the last chapter, we were using the sometimes unrealistic practice of
using constants in the SET_WINDOW procedure call. Often you don’t know until the program is
running what the values to be passed to SET_WINDOW are. The X values which were used in the
SET_WINDOW procedure call (0 and 100) came from the fact that there were 100 data points. The
Y values (for this type of plot) must be determined either by you or by the computer itself. If you
want the computer to determine the X or Y minimum and maximum, you could do it in the
following manner. Assuming that the X values are in a real array called :

const

MaxReal= 1,797693134B6231E3083
Hmaxi=-MaxReals {Smaller than smallest Ppossible value in arrav?}
for I:=1 to N do {N is the number of elements in the arrav}

if XOIlxXmax then Xmax:i=x[Il}

A similar method can be used for figuring the minimum value of the X array: First, assign ¥min
to be +MaxReal. The reason this is done is to ensure that at least the first value in the array is
used. Then, check through the array of X values, and if the value of any element is smaller than
the current minimum, it becomes the new minimum.

Of course, the minimum and maximum Y values can be found in the same manner.

Miscellaneous Graphics Concepts

Drawing a Window Frame

The SET_VIEWPORT procedure specifies where in the logical display to put the plot—the
subarea of the plotting surface in which to plot. This is the area which the SET_WINDOW

procedure affects.

L PHYSICAL DISPLAY SURFACE
—— LOGICAL DISPLAY SURFACE (SET_DISPLAY_LIM)

VIEW SURFACE (SET_ASPECT)

— VIRTUAL
N ~~—— COORDINATE

SYSTEM

WINDOW —>
(SET_WINDOW)

WORLD COORDINATE SYSTEM

VIEWPORT
(SET_VIEWPORT)

Quite often, a frame is desired around the current window to set it apart from the labels outside
the window, and so forth. If the window limits are known (or it is convenient to find out), you
can just do a MOVE and four LINEs, as was done in the last chapter. The way it was done in the
last chapter was to draw the frame after the SET_VIEWPORT call, but before the
SET_WINDOW call. Since we had not yet set our own window, the default window limits were
—1 to 1 in both directions. Therefore, we could say:

move(-14-1)3% line(-1+13)1

line(1+1)3

line(1l,-1)3 line(-1,-1)3

This is not always the case, however. If you do not know the current window limits, you can
interrogate the system through the DGL procedure INQ_WS. The values returned from there
can be used to draw the frame. The following lines of code demonstrate how to do this. First,
the INQ_WS routine is accessed to determine the current window limits, and then a box is

drawn around those limits.

37

38

Miscellaneous Graphics Concepts

\ needed by
/ the DGL procedure
/o Mina_ws™,

const
WindowlLimits= 4501 {mnemonic bketter than
tvpe
LimitQOrder= (Kmins Xmaxys YminsYmax)i
LimitTvre= array [LimitOrder] of reals
var
Pac: packed array [1.,+1] of chars {
Iarrav: array [1++11 of inteders {
Window: LimitTypes {
Error: inteders {
L]
*
L]

ing_ws{WindowLimits»0s0s4PacsIarraysWindowsError)s
if Error=0 then bedin
move (WindowlXminl WindowlYminl)i {move
line(WindowlXminl Windowl¥Ymax1)i {draw
line(WindowlXmaxl WindowlYmax]1)i {draw
line(WindowlXmaxl »WindowlY¥Yminl)i {draw
line(WindowlXminl sWindowlYminl)si {draw
end {Error=07}
else writeln(‘Error ‘sError:0y’ occurred in “Frame" ')}

to
to
1o
to
to

lower
uppPer
upper
lower
lower

magic number?

\ These are the sundries

the call to

left corner?}
left corner?
right corner?
right corner?’
left corner?}

D e e

Miscellaneous Graphics Concepts

Turning Displays On and Off

If you ran the last chapter’s programs, and do not have a bit-mapped display, you probably noticed
that the graphics screen was turned on automatically to show you what was being plotted, but the
alpha screen was not turned off at the same time. If you do have a bit-mapped display (e.g., Model
237), both alpha and graphics occupy the same screen; the screen is either on or it isn’t.

In the case of nonbit-mapped displays, as soon as the program ended, the Main Command Level
prompt appeared at the top of the screen, obstructing the view of the top portion of the graphics
image. This can be mildly annoying as it is, having to turn off the alpha raster by pressing the
key, but it rapidly gets more annoying if your program generates printed output and
plotted output which are not intended to be viewed simultaneously.

What is needed is a way to turn either the alpha raster or the graphics raster on or off at will. There is
a way to do this, by calling the OUTPUT_ESC procedure with operation selectors 1050 or 1051.
Or, if you prefer a more readable method, the you could write a procedure to do the operations.
Assume that there has been an enumerated type declared:

tvre
DisplavBtates= (Offs0n)

Here is an example section of code to show you how to turn the displays on or off. The
parameter used is assumed to be of the type declared above.

LR RN AR R RFERRR R R R R AR RN ER R RN RE R RN R R R RAFR AR AR RRFRRRRRRERRRRRNR]
procedure Alpha(State: boolean)i

T i R s ¥
{ This procedure turns the alerha raster on or off (true=on,s false=off), ¥
T i }
const
AlrphaRaster= 10513 {mnemonic better than madic number}
var
AlrhaOn: array [1+,+1]1 of inteders £\ This is all stuff that 1}
Rarray: array [1+41] of reals { is needed by the }
Error: inteders { / "output_esc" Procedure, }
bedin {procedure "Alrha"}
if State=0n then AlphaOnlll:i=1 {"On" is a boolean constant: truel

else AlrhaOnl1l:=03%
putput_esc(AlrhaRasters10sAlrha0OnsRarravsError)s

if Error<>0 then writeln(’Error ‘+Error:0y’ in pProcedure "Alpha".’)}
endi {procedure "Alrha"}

Similar code could be generated for turning the graphics display on and off. The references to
“Alpha’’ should be changed to ““Graphics’ just to avoid confusion, and the operation selector
should be changed to 1050.

39

40 Miscellaneous Graphics Concepts

Conversion Between Coordinate Systems

Many times, you'll probably want the ability to convert back and forth between virtual display
coordinates and world coordinates. One of the most-used areas where this is desired is where you
want to specify some parameter in units relative to the display device, not the graphical model
currently in use. For example, it is often desirable to specify character sizes as, say, 6% of the screen
height. Or, you want to draw an X axis whose tick marks are 1% of the screen height. These, and
other places, the values could be specified in world coordinates, but it is an inconvenience to have
to specify a constant-sized line or character in units which are varying all over the place. For
example, if you have a general-purpose plotting routine which gets it data from an external source,
it doesn’t know until it gets the data what the window limits are to be. It is only after the window
limits are known that the character sizes would be specified.

If we could specify these things in virtual display coordinates, we could have the computer do the
dirty work of converting from virtual coordinates to whatever the current world coordinates are.

To convert from one coordinate system to another, there are three steps involved:

1. Determine, as a fraction, how far into the old system the point of interest is. For example, if
the old system goes from 10 to 20 in X (calculations for Y proceed with identical steps), and
you want to find out how far 13 is into that range, you take:

DldFractionms=(X-01ldXmin)/(0ldXmax-01dXmin) 3
or, using our numbers,
DldFraction:=(13-10)/(20-10)3

This evaluates to 0.3, and, sure enough, 13 is three tenths of the way between 10 and 20.

2. Take the fraction found in the previous step, and go the same distance into the new
coordinate system. For example, say our new coordinate system goes from 300 to 400.
To go into this new range the same fraction of the way, you take:

NewDistancesr=0ldFraction* (NewXmax-Newdmin) 3
Again, putting our numbers into the expression,
NewDistance:=0,3%(400-300)3

This evalutes to 30, and, sure enough, we have to go thirty units into the new coordinate
system.

3. To “‘gointo’’ the new coordinate system means that we have to add the new coordinate
system’s minimum value to the distance into the new system so that the distance into the
new system is relative to the same starting point as the system itself.

NewPoirnts:=NewDistance+Newimin3i
or, in our units,
NewPoint:=30+3003

And 330 is the desired point in the new coordinate system.

Miscellaneous Graphics Concepts 41

The “old” coordinate system and the “new’’ coordinate system can have any maxima and minima
(you are not restricted to converting between the world coordinate system and the virtual coordin-
ate system), and the point of interest may be inside the range, one of the end points, or outside the
range; it make no difference to the mathematics.

Following are two routines which convert between virtual display coordinates and world coordin-
ates.

(R R RN R R RRERERR RN RN NN RN R AR R FRF R RRRRRERFRRRRERERRRHEERR RN R A RRRR RN R RN]
procedure ConvertYirtualToWorld(WirtualX, VirtualY: realt

var WorldX: WorldY: real)s
S e }
{ This routine converts any Point in wirtual coordinatess whether on the %
{ plotting surface or nots into world coordinates. }
R }
const
WindowlLimitss= 4503 {mmemonic better thaw madic number}
ViewportLimits= 4313 {+vvvherey too. }
tvrPe
LimitOrder= (Xmins Xmaxs Ymins Ymax)i
LimitTvre= array [LimitOrderl of realj
var
Pac: packed array [1.,.11 of chari {\ These are the sundries 1}
Tarrav: array [1.,,1] of inteders { \ mneeded by the call to ¥
Window: LimitTyres { * the DGL procedure }
Viewport: LimitTvres { / M"ina_ws", ¥
Error: inteders { / ¥
bedin {body of Procedure "ConverttirtualToWorld"?}

ina_ws{WindowLimits 004 PacslarraysWindowsError)}
if Errors»0 then writeln(’Error ‘sError:0;
‘" ip determining window limits in "ConvertYirtualToWorld".,’)3
ina_ws(ViewportLimits»0,0+4,PacsIarrayViewrPortsError)s
if Error<*0 then writeln{(’Error ‘+Error:0;
‘" in determining viewport limits in "ConvertVirtualToWorld".,’)i
World¥:s=(Virtuald-ViewrortlXminl) { \ Calculate ¥ distance from leftsss }
/(ViewportI¥maxl-ViewportL¥minl) { \ ...convert to a fraction... +
*(Windowl¥maxl-WindowlXminl) { / ++v90 same fraction into world... 1}
+WindowlXmindsi { / +ivadd Xmin to det value. }
WorldY:=(Virtual¥-ViewportlVminl) { \ Calculate Y distance from bottom,,.}
/(ViewportI¥max]-ViewportL¥minl) { \ +..convert to a fraction... b
#(Windowl¥Ymax]-WindowlYminl) { / +++90 same fraction into world.,.. %
+WindowlYminls {7/ +ivadd Ymin to det value, ¥
endi {procedure "ConvertVirtualToWorld"}?

42 Miscellaneous Graphics Concepts

LR RN ERRE R R R R REEREF R R R RN R R R R AR R R AR R RN R R AR R AR AR HERREHR)

procedure ConvertWorldToVirtual(World¥, WorldY: real
var YirtualXy VYirtualY: real)s
U
{ This routine converts any Point in world coordinatess whether on the }
{ pPlottindg surface or nots into virtual coordinates.
{ o e o o o e e e e e e e e
const
Windowlimitss= 45074 {mnemonic better than madic number}
ViewportlLimits= 4513 {evvheres too, +
type
LimitOrders= (Kminy Xmaxs Ymins Ymax)i
LimitTyvpe= array [LimitOrder] of reals
var
Pac: racked array [1+,1]1 of char? A\ These are the sundries
Tarrav: array [1,41]1 of inteders { \ mneeded by the call to
Window: LimitTvres { the DGL pProcedure
Viewport: LimitTvres { / Mina.ws",
Error: inteders {7/
bedin {bod» of procedure "ConvertWorldTolVirtual"

ing_ws{(WindowLimits»0s04d4PacslarravsWindowsError)s

then writeln(‘Error
determining window limits

if Error<:0
i in

if Error<>0 then writeln(’Error
in determining viewport limits

VirtualXs=(World®X-WindowlXmind)
J(WindowlXmaxI-WindowlXminl)
*{(ViewportiXmaxl-Viewrort{Xmind)
+Viewrort{Xminls

VirtualYei=(World¥Y-WindowlYminl)
/{WindowlYmaxl-WindowlYminl)
#*(Viewrport[¥maxI-YiewrortIiVminl)
+liewrortl¥minls

end

‘yErrori0

"ConvertWorldToVirtual®,)3
ind_ws(YiewportLimitss04044sPacylarraysViewrortsError)i

in

"yError:0y

"ConvertWorldToVirtual"™,)}

{
{
{
{
{
{
{
{
{

/

procedure

Calculate X distance from left...
vesCOnuert to a fractionaes.

vee90 same fraction into world...
vesadd Kmin to det value,

Calculate ¥ distance from bottom...
vesComuert to a fractione.s

+v+e90 same fraction into world,..
vevadd ¥Ymin to det value,
"ConvertWorldToVirtual"}

}
j
¥
}
}
}

}
}
}
}
}
}
}
}

Miscellaneous Graphics Concepts 43

More on Labelling a Plot

To help you get a better grasp of the concept of labelling, there will be four small sections, each
of which demonstrates something more about the concept of labelling a graph.

The Character Cell

The first program deals with the relationship between the size of the character, per se, and the
size of the character cell—that rectangle in which the character is placed. This program is on
file “CharCell’” on the DGLPRG: disc.

(A
Size of Character in Character Cell

x
x
x x
x

X x % % x
X x x x x x x

X X x X X x x

x x x x x

X x X X X %X X X X X X X X X
I:Ix-xxx

x X x x x

X X X x M X X %X X X X X X X

x
x
x
x
x
x
x
x

X X X X X X X X X X X X X X
X X X X X X X X X X X X % X
X X X X X X X X X X X X X X
X X x X X X %X X X X X X X X
X X X X X %X X X X X X X X X
x x
x x
X X X x X X X X X X X X X X
X X X X X X X X X X X X X x
X X X X X X %X X X X X X X X

x
x
x
x

(3urrent”’/,,/”/

Pen
Position
\ Y,
prodram CharCell{outpPut)i {prodram name same as file namel}
impart d9l_liby ddl.inai {access the necessary Procedures’}
const
Crt= 33 {device address of dgraphics raster}
Controls= 03 {device control wordj ignored for CRT}
type
LordTrpes= 14,93 {the valid values to pass the "Lorg"}
Str255= string[23513 {for the procedure "Glabel"}
var
Error: inteders {display_init return variablei O = oK}

Iy Xy Y inteder? {loop control variables?}

44 Miscellaneous Graphics Concepts

FPaded {REEXFEXEEREFRRRRERRERFRRERRRRRRERR R RN R R R RN RN R RN R RN RN R RRRRD

bedgin {body of prodram "CharCell"}
draphics_inits {initialize drarhics librarv}
displav._init(Crt+Control+Error)s {initialize CRT?
if Error=0 then bedin {if no error occurred...}
set_aspect(511,389)3 {use the whole screen}’
movel(-1+-1)3% line(-141)1 line(i 1)3% linme(ls-1)3 line(-1,-1)%
set_window(-2+38+-7+2122.3)1 {define arprorriate window?l
set.char.size(l,2)3 { A\ ¥
movel(ls21)3 { » Do main label, }
dtext('Size of Character in Character Cell’)3 { / ¥
for X:=0 to 36 do begin {\ ¥
for Y:=0 to 15 do bedin { A ¥
moue(X-0,1yv+0,1)3 { \ Draw the four 9x15 ¥
line (K+0,1¥-0,1)3 { \ character cells, Make ¥
moue (K+0,1,Y+0,1)3 { / a frame around each: }
line(X-0,1+Y-041)3 { / and an X at every }
endi {for v} { / point, }
endi {for x} {7/ ¥
for I:=0 to 3 do bedin {draw a frame around each char cell}
move(I*9,0)F line(I%9,15)3 line(I*9+9,15)1 line(I*8+9,0)3 line(I*9,0)%
ends
set_char_size(9,13)1 {bidg characters?
movel{l,4)s {90 to starting Position}
gtext('Ghyi)3 {label some characters}
ends {Error=07} {end of conditional code}
drarhics_terms {terminate drarhics librarv}
ends, {prodgram "CharCell"} {end of Prodram?}

As the diagram shows, a character is drawn inside a rectangle, with some space on all four sides.
Both the rectangle’s width and height are specified by the values passed to the DGL procedure
SET_CHAR_SIZE, and are measured in world coordinates. This rectangle is subdivided into a
grid of 9 wide by 15 high. Characters are drawn in this framework.

The current pen position—that position moved to before writing a label—is one unit to the right
and four units up from the lower left-hand corner of the character cell. For example, when
labelling a lower-case ‘b, the bottom of the longer vertical line would end up at the point
moved to before labelling. Also note that there doesn’t have to be any part of the character at
the current pen position, as in the upper-case “G’" in the plot. For characters which have
descenders (lines which go below the “‘baseline’” of the character cell), the current position is
still relative to the lower left corner of the character cell, not the character.

Of course, the little x s in the plot above are not drawn when you label a string of text; they are
there solely to show the position of the characters within the character cell.

The DGL procedure SET_CHAR_SIZE specifies the height of the character cell, not the charac-
ter itself.

Miscellaneous Graphics Concepts 45

Setting Character Size

In a previous section, we discussed translation of points between coordinate systems. And as it
was mentioned before, often it is desirable to be able to specify character sizes in screen-
dependent units, rather than model-dependent units.

As we saw in the last chapter, there is a DGL procedure called SET_CHAR_SIZE which sets an
attribute of all subsequent characters, namely the width and height of the character cells. When
using SET_CHAR_SIZE, the characters are scaled using the same scaling as the objects drawn.

In other cases, however, the text size should be related to the display device, rather than the
user’s graphics model. For example, when a general-purpose display routine gets data from a
file, or some other source, it probably does not know until the data is actually received what the
range of the data is. Thus, the window limits are calculated in the program. To get the title of the
plot of a consistent size, you would have to convert the actual size of the label relative to the
display device to the same size expressed in world coordinates so they can be sent to
SET_CHAR_SIZE.

The following piece of code shows you how to define character cell height in virtual coordin-
ates, and the width is defined as a fraction of the height; thus, it is an aspect ratio. The reason
that the aspect ratio is desired, rather than the character cell width, is that if you want characters
with a constant shape, you would just have to take your first parameter, and multiply it by a
constant. Thus, in effect, you have just specified the aspect ratio.

The values passed into the routine are converted into character cell width and character cell
height in world coordinates, which the DGL procedure SET_CHAR_SIZE needs.
SET_CHAR_SIZE is called and the converted values are passed to it. The converted values are
retrievable by invoking the INQ_WS procedure with operation selector 250. The character cell
height and width are needed by another piece of code (which actually does the labelling)
covered shortly.

Here is how to specify character size in virtual coordinates, with an aspect ratio, and convert it
into parameters appropriate for the SET_CHAR_SIZE routine. Notice that the conversion
routine covered a few sections back is used:

yar
Width: real’ {temporary spot for width?
KOy YOu reali {00 (virtual) in world}
Wiy Y1z realt {141 (virtual) inm world?l
L]
L]
L]
ConvertVirtualToWorld (0,0 ,X0,¥0)5 {convert 0,0 in virtual to worldl}
ConvertVirtualToWorld (i1 X1s¥1)3 {convert 11 in virtual to world}
Heidght:=Heidht*{(Y1-Y0)3 {convert height in virtual to world}

Width:=Height*AspectRatio* (¥1-¥O)/(¥1-¥0)3 {convert width in virtual to world}
set_char_size(WidthsHeight)} {invoke the parameters}

46 Miscellaneous Graphics Concepts

Here is the graphical output of a program which demonstrates the use of the procedure
CHARSIZE, and then the program itself:

~
47
9
<
&
_ J
prodram CsizeProgloutput)s
import d49l.liby dgl.ings {det drarhics routines}’
const
Crt= 33 {address of internal CRT}
Control= 03 {device controli O for CRT}
var
Error: inteders {variable for initialization outcomel}
I+ J: inteders {utility variables?
Strng: stringl10]3 {temporary holding place for strings}
$include ‘DGLPRG:ConuVtoW’$ {virtual-to-world conversion’

$Paded [EREEAREERE AR ER R R R R R R R R R RN AR AR RN RN E R RN R RN R AR AR R R R R AR RN}
procedure CharSize(Heigdht, AsrectRatio: real)s

This procedure defines character cell size and the puts the Width and
Height values into dlobal variables for later use. The arduments rassed
in are the heidht of the character cell in VIRTUAL coordinates: and the
aspect ratio of the character cell, The values for the window limits
may be anvthindi they are taken into account and do not affect the size
of the characterss since they are defined in virtual coordinates., This
procedures along with Lorg and Ldir, define dlobal variables for use by
Glahbel.

e e e e
N e e N o

Miscellaneous Graphics Concepts

var
Widths: reals {temporary spot for width?
KOy YO reali {00 (virtual) in world?
Wiy Y1z reals {131 (virtual) in world?}
bedin {body of procedure "CharSize"}
ConvertVirtual ToWorld (0,0 ,X0,Y0)3 {convert 00 in virtual to world}
ConvertVirtualToWorld (1l sX1,¥1)3 {convert 141 in virtual to world}
Height:=Height*(Y1-Y0)3 {convert height in virtual to world}
Width:=Heidht*AspectRatio*(X1-X0)/(Y1-¥0)3 {convert width in virtual to world}
set_char_size{WidthsHeidht)} {irvoke the pParameters}
endi {procedure "CharSize"}
$Paded L EEREFREREREER R RE R R RRRR R RE R AR RRRR R RN R R R ERRERRRE RN E RN RRRNARR]
bedgin {hodv of prodram "CsizeProg"?}
grarhics_init} {initialize the drarhics svstem?
displav_.init(CrtsControlsError)i {which output device?}
if Error=0 then bedin {output device initialization OK?}
set_aspect(S511,389)3 {use the whole screen’
set_window(1+2,100,0)3 {scale the window for the datal
for I:=1 to B do begin {six different character sizes}
CharSize(I*I*0,014+0,6)1 {install character size}
move(l T#I*I*0,4+1)3 {move to a approrpriate placel}
strwrite(Strngsl yJ I%1:0)3 {convert number to stringd}
gtext (Strng+ /7%) 1 {label the string’

endi {for i}
endi {Error=07}
dgrarhics_termi {terminate the sdrarhics packadel
end, {prodgram "CsizeProg"}

The FOR loop writes lines of text on the screen with different character sizes. Incidentally, notice
also the SET_WINDOW procedure. It specifies a Ymin Jarger than the Ymax. This causes the top of
the screen to have a lesser Y-value than the bottom. This is perfectly legal.

Again, character cell height, when using the algorithm above, is measured in virtual coordinates,
and the definition of aspect ratio for a character is identical to the definition of aspect ratio for the
hard clip limits mentioned earlier: the width divided by the height. Thus, if you want short, fat
letters, use an aspect ratio of 1.5 or larger. If you want tall, skinny letters, use an aspect ratio less
than about 0.5. If you call the above routine:

CharSize(0.,03/,0,6)3 Cell 3% virtual coordinate units high, aspect ratio 0.6.

CharSize(0,068+0,3)3 Cell 6% virtual coordinate units high, aspect ratio 0.3 (tall
and skinny).

CharSize(0.142)} Cell 10% virtual coordinate units high, aspect ratio 2 (short

and fat).

47

48 Miscellaneous Graphics Concepts

Setting the Label’s Direction

We saw in the last chapter that label could be rotated by using the DGL procedure
SET_TEXT_ROT, which specifies angles in a run/rise format. Many people, however, deal with
angles more easily than run/rise ratios. Again, the angular value is converted to run/rise numbers by
taking the cosine and sine of the angle, respectively:

set_text_rot(cos{(Angle)sin(Andle))s

You could define a procedure for which the angle could be specified in degrees, radians, or

grades', depending on the value of the units parameter, which, being an enumerated type, can
have the value DEG (degrees), RAD (radians), or GRAD (grades):

AngleTvpe= (Dedgy Rady Grad)i

The value passed in, in the unit of measure defined by the units parameter, must be converted
to radians. Radians are the only units understood by the trigonometric functions in Pascal.
Conversion is accomplished by a simple division. (The division could be changed to a multiply
by the reciprocal. This would increase the speed with little loss of understandability.)

const
Ded_rer_rad= 57,29577951313% {180/pi: for converting dedrees to radians?
Grad_per_rad= B3,6619772368+% {200/pi: for convertind drads to radians}

case Units of

Deg: Direction:=Direction/Ded_per_radi {dedrees to radians}
Rad: 3 {correct units alread»}
Grads Direction:=Direction/Grad_per_rads {drads to radians}
endi {casel}
set_text_rot(cos(CharTheta) sin(CharTheta))i {invoke the new text direction}

For example, assuming you call the routine LatelDirection, and that there is a constant called
“Pi”” which has a value of 3.1415926535897.

LabelDirection(0Deg); Wirites label horizontally to the right.
LabelDirection(Pi/2+RAD); Wirites label vertically, ascending.
LabelDirection(14,Grad); Writes label ascending a gentle slope, up and right.
LabelDirection(PisRad)} Writes label upside down.
LabelDirection(270,DEG) Wirites label vertically, descending.

1 One revolution = 360" = 2% radians — 400 girades.

Miscellaneous Graphics Concepts 49

Here is a plot demonstrating the specification of a label’s direction by a genuine angle:

4 A
o
© o
¢ 9 % o g) @]
® 0 o O
% % g% 0 2 o
o
6 0 oSeB8ugy "7 o
o & & ooy O >
S @ e VT (00)4) 29
o ek[f \ |///// WO o
SQD R \\t//c////3® ae?
%] \\\\ ///// 2@
Bg 31‘ \\\\\\\\”//////// %) aed
= P SR NN 1
Bop @a1-——-=S@QFTT-79 “=o
=N~ 35
61— ///////fl\\\\\\\\ ~ [%] o
papr @ @3//////////7”\\\\\\\\ 395 9
[7) - RN A AN N
62° xek/////ll\\\\\\o Yy “eg
QL2 STV o
02® © SN 1N © T
el 0] \QC/,})I\)[\)N ®S®e Q’®
©o? ¢ Vo gNTS T % ©
? 0 @@S o \
© 5 q o s 9
© o 2 2 % % ¢
@ 2 0 0 ¢
L Q @ ©
J/
prodram LdirProds {prodram name same as file namel
import dgl_libs {access the necessary procedures}
const
Crt= 3% {device address of grarhics raster?
Control= 03 {device control words idgnored for CRT}
tyPe
AndType= (DegsRadsGrad) i {used by procedure LabelDirection}
var
Error: inteder} {displav_init return variabled® 0 = oK}
T+d: inteders {loop control variable and spare?}
Strng: strindgl3013 {strind to label?
CharTheta: reals {d4lokal variable for label direction}

$paded (HEEERRFFFFFRRRRERRRRRRNRRERRRFR R RN RRRRARERE R RN RN RRERRRRRRR AR]
procedure LabelDirection(Direction: reali Units: AndTvpe)s

e ekl }
{ This procedure is used in condunction with LabelOrigins CharBize and ¥
{ Glabel. It sets the labellindg direction to be used, and rlaces the }
{ direction into a dlobal variable so Glabel can use it. ¥
e }
const

Ded_rer_rad= 57,2857795131% {1B0/pi: for converting dedrees to radians}
Grad_per_rad= G3.6519772368% {200/pi: for converting drads to radians}
bedin {procedure "LabelDirection"}
case Units of
Deg: Direction:=Direction/Ded_rer_rad} {dedrees to radians}?
Rad: 3 {correct units alreadr}
Grad: Direction:=Direction/Grad_per.radi d{drads to radians}
endi {casel}
CharTheta:=Directionsi {Put into a dlobal variable}
set_text_rot{cos(CharTheta)sin(CharThetal))} {invoke the new text direction’
ends} - {procedure "LabelDirection"?

50 Miscellaneous Graphics Concepts

traded Ay e T T I R ittt r el

bedin {bodvy of prodgram "LdirProg"?}
dgrarhics_inits {initialize drarhics librarv}
displav_init(CrtsControlsError)s {initialize CRT}
if Error=Q then hbedin {if ro error ocourred...?}
set_aspect(511,+389); {use the whole screen?
set_window{-1,19-14+1)3 {define arPprorriate window?
set_char_size(0,05,0,08)3 {set the size for the characters?
for I:=0 to 35 do bedin {every ten dedrees}
Strng:=’'"3 {empty the string}
struwrite(strngdylsyJyI*10:0) 3 {canvert the loop variable to dedrees}
Strngi='-emenaan ‘+Strng+’ deg’y {attach prefix and suffix}
LatelDirection(I*10,Ded) {srecify label direction?
moue (040) 3 {move to the center of the screen}
dtext(Strngd);s {label the text}

ends {for I}
endi A{Error=07}
grarhics_terms’ {terminate draphics librarv}
end, {prodgram "LdirProg"}

When a character size is selected whether through the DGL routine SET_CHAR_SIZE or
through the utility routine CHARSIZE, the width and height associated with a character cell are
defined for an unrotated character cell. Thus, when a character is rotated. its shape does not
change, even though its width (measured along the X axis) and height (measured along the Y

axis) are not the same directions as the display device’s axes.

[n the preceding plot, you may have noticed that the hyphens do not precisely meet in the
middle. This brings up another point: when you move to a point and then write a label, which

part of the label ends up at that point? In other words, how is the label justified?

Justifying Labels

On a label written by the GTEXT procedure, the label is always justified at the lower left-hand
corner of the label. Unfortunately, this does not lend itself to centering text, which is often a
very desirable thing. It would be nice if we could programmatically select how the label should
be justified. For the progressive example we were working on in the last chapter, the main title
needed to be as far toward the top of the graph as it can be, and at the same time, centered

horizontally. The following addresses just this kind of need.

For horizontal centering, there are three possible choices: left-justified, centered, and right-
justified. For vertical centering, there are also three choices: bottom-justified, centered, and
top-justified. Thus. there are nine possible combinations of values which can be sent to the
LABELJUSTIFY routine: left. centered, and right for the X direction, and for each of these,

bottom, centered, and top for the Y direction.

Assume there are two enumerated types declared:

HlustifyTyre=(Left +HCenteredsRidht)s
YdustifyTyre=(Bottom VCentered Top) i

Miscellaneous Graphics Concepts 51

Label justification is relative to the label. not the plotting surface, and it is independent of the
current label direction. For example, if you have specified:

e upper left label justification,
e and label direction of 90°,

® a move to point (6,8),

and then write the label, it is written going straight up, not horizontally:

L

U

@

'_

_ &=

O 35

Lo(\:/ver Left > *g g

rner
orne > ‘wg\\égo

Therefore, it is the upper left corner of the label which is at point 6,8 relative to the rotated label.

However, it is the lower left corner of the label which is at 6,8 relative to the plotting device
because the label has been rotated.

Note that two things are obtained by calls to the INQ_WS procedure: the current pen position,
and the current character size (in world coordinates).

If you are going to use the label justification scheme just described, you will need to write your
own labelling routine which takes into account the current justification values. Label justifica-

tion gets a little tricky when dealing with user-definable label direction, as you can see in the
section of code below.

The following three global variables are assumed to exist:

e HJustification: The currently-defined horizontal justification. This is of the previously-
mentioned type HdustifyTyre.

e UJustification: The currently-defined vertical justification. This is of the previously-
mentioned type HJustifyTrre.

® CharTheta: This real variable is the current label direction, expressed in radians. We need to

keep this in a global variable because there is no operation selector we can send to
INQ_WS to determine it.

const
CharSizeCode= 2301 {mnemonic better than madic numberl
CurrentPosition= 2591 {ditto}
tyrPe
Positions= (Ra¥)3
PositionTvPe= arravy [Positions] of reali
CharAttributess= (WidthsHeidghth) 3

CharAttrTypes= array [CharAttributes] of reals

52 Miscellaneous Graphics Concepts

var
Chars: inteders
Charsize: CharAttrTvres
LensHeight: reals {lendth and heidht of character string}
DxsDve reals
RiTheta: reals {for rectandular-to-pPolar conversiont
Pac: packed array [1,+11 of chari { \ These are the ¥
Iarrav: array [1,+1] of inteders: { \ sundry items ¥
Position: PositionTyerel { / needed for the %
Error: integers { / call to "ing_ws"}
L]
L]
L]
ing_.ws(CharSizeCodes0+0+2yPacylarraysCharsizesError)s {det ren position}

if Error<20 then writeln(’Error’yError:0s’ in "Glabel", ')}
Chars:=strlen(text)?

Len:=CharsizelWidthl*{(7%Chars+Z%(Chars-1))/93 {lendth minus inter-char garl
Height:=Charsizel[Heighthl*B/153 {heidht minus inter-line darl
Dxs=Len*¥(-ord{(HJustification)/2)3

Dvi=Height*({-ord(YJustification)/2)3

Ri=sart (Dx*Dx+Dy*Dv) 3 £\ Convert to polar coordinates so }
Theta:=Atan(Dv Dx) 3 { / rotation is easv. }
Theta:=Theta+CharThetas {add the LabelDirection andle}

Dxi=R#*cos{Theta)} { \ Convert R and the new Theta back }
Dyi=R¥sin(Theta)s { / to rectandular coodinates, }
ing_ws(CurrentPosition+04042PacslarravsPositionsError); {9et Pen position}

if Error=0 then bedin
move(Position{X1+DxPosition[¥I1+Dv) i {move to the new startind point}
dtext(text)

end {Error=07}

else writeln(’Error’+Error:0,s’ in "Glabel", ')

And here is a program using all the label-related algorithms mentioned above.

()

LEFT HCENTERED RIGHT

Tor TEST TEST TEST

VCENTERED NEST TEST TESTX

BOTTOM JEST TEST TESTK

program JustProd(output)s

import dgl_libsdgl_inas
const
CrtAddr= 33
ControlWord= 03
tvpe

HdustifyTvpe=
VdustifyTyres=

AngType= (DegsRadsGrad) i

St r255= stringl255]3
var

ErrorReturn: inteders

Hiust: HlustifyTypei

Viust: YdustifyTrpres

I: inteders

Strnyg: str2551

CharWidth:CharHeidght: realsl

HJustification: HlustifyTrpred
YJustification: YdustifyTrres
CharTheta: reals

$include ‘DGLPRG:ConuVtoW’$

Miscellaneous Graphics Concepts

{det drarhics routines?t

{address of internal CRT}
{device controls ¢ for CRT}

(Left HCentered:Ridght)s {horizontal Justification}
{BottomsVYCenteredTor) i {vertical Jjustification?}

"LabelDirection"?
"Glabel"?}

{used by Procedure
{for the procedure

{variable for initialization outcome?l
{horizontal Justification variablel
{vertical Justification variablel}
{for the strwrite statement}
{labelled text holder?

{ \ These are global variables

{ \ needed by the LabelJustify/

{ / LabelDirection/CharSize

{ / series of Procedures.

{rieeded by procedure "CharBize"?}

R

Procedures Frame, CharSize, LabelDirection, LabelJustify,

Atan, and Glabtel go here.

bedin
dgrarhics_init3

displav_init(CrtAddr ControlWordsErrorReturn)s

if ErrorReturn=0 then begin
set.aspect(3511,+389)1
set_window(-1+2+5,-0,5:2.5)3
Frames

CharSize(0,03+0,6)1
LabelDirection(0,Ded)s

LabelJdustifv(HCentered Tor)i

for Hiust:=Left to Right do bedin
Strngi=‘"'3
strwrite(StrngslsIsHiust)
move(ord(Hiust)s2.4)3
Glabel(Strng)s

endi {for Hiust}

Labels on the left edde

LabelJustify(Left VCentered)s

for Vjust:=Tor downto Bottom
Strngs='"%
strurite(Strngs1 I sViust) i
move(-0,9s0rd(Viust))i
Glabel(Strng);

endi {for Viust}

do bedin

Labels at the top ==========z=z==

{body of progdgram "JustProg"}
{initialize the drarhics svstem?
{which output device?}
{output device initialization
{use the whole screen’

{scale the window for the data}

{draw a frame around the screenl’
{width=3% screen widthi asep, ratio=.G}
{horizontal labels?}

OK7}

{label’s reference Point: torp middlel
{horizontal loor}

{null the string so nothing left over?}
{convert enumerated tvePe to stringl
{move to the arpropriate rlacel}

{label the string?}

{label’s reference point: left middle}
{vertical loor}

{null the string so nothing left over}
{convert enumerated tvepe to stringl
{move to the approrriate rPlace?}

{label the string?}

53

54 Miscellaneous Graphics Concepts

{===== Labels ("TEST") with different Jjustifications =======z===z=z=z===z===zz=z=}
CharSize(0,068+0.8)1 {characters a bit bkidder’
for Hiuste=Left to Ridght do begin {horizontal loor}
for Viuste=Tor downto Bottom do bedin {vertical loor}
LabelJustify (HiustMiust)s {set label Justification’
movel{ord(Hiust)+0,03yord(Viust)+0,03) 3 A\ }
line(ord (Hiust)-0,030rd(Viust)-0,03)3 { N Make the "x" at }
move(ord(Hiust)-0,03s0rd(Viust)+0,03)3 { / the apPropriate }
Tive(ord(Hiust)+0,030rd(Viust)-0,03)1 {7/ place, }
movelord(Hdust) sord(WViust)) s {moue to label’s starting rposition}
Glabel ('TEST)3 {label the text}
ends {for YViust}
endi {for Hiust}
endi A{ErrorReturn=07}
drarhics_terms’ {terminate the drarhics rPacKadel}
end, {prodram "JustProg"}

The xs indicate where the pen was moved to before labelling the word “TEST”. What this
diagram means is that, for example, if LabelJustify(Left Bottom) is in effect, and you move to
4.5 to write a label, the lower left of that label would be at 4,5. This automatically compensates
for the character size, label direction, and label length. It makes no difference whether there is
an odd or even number of characters in the label. If LatelJustify(Center,Tor) had been in
effect, and you had moved to 4,5, the center of the top edge of the label would be at 4,5. You
can readily see how useful this concept is in centering labels, both horizontally and vertically.

Miscellaneous Graphics Concepts

Monochromatic CRT Drawing Modes
On a monochromatic CRT, there are three different drawing modes available':

e Drawing dominant lines. This is the most obvious drawing mode; pixels are turned on. It is
the mode the graphics package is in by default. White lines are drawn on a dark back-
ground, and dark lines are drawn on a white background.

e Erasing lines. In this mode, pixels are turned off. If a line is erased on a background which
is already dark, there is no effect. This is the method for making sure a line is gone after it
may or may not have been drawn.

e Complementing lines. When this type of line is drawn, pixels which are on are turned off,
and pixels which are off are turned on. This is for drawing something which will be visible
no matter what the background is; e.g., a graphics cursor.

The drawing modes are selected by calling the OUTPUT_ESC procedure. This DGL procedure
allows you to control device-dependencies of output devices. The operation selector which
controls drawing modes is 1052. Following is an algorithm which takes care of all the necessary
variables, declarations, and all-around ‘‘housekeeping’’ involved in selecting a drawing mode.
This implementation of the algorithm assumes the existence of the following type declaration:

DrawingModeTrre= {(Dominant+ErasesComplement)s

Here is the section of code for selecting drawing modes on a monochromatic CRT:

const
SetDrawingMode= 10523 {mnemonic better than madic number}

var
DrawMode: array [1++11 of inteders {\ This is all stuff that 1}
Rarrav: array [1+413 of reals { *» is needed by the }
Error: inteders {/ "output_esc" procedure, }

L[]

case Mode of {\ ¥
Erase: DrawModel[11:=21 { A\ Convert DrawindMode enumerated }
Dominant: DrawModel[11:=03 { * tvyPe into the approrriate ¥
Complement: DrawModel11:=3} { / value for OUTPUT-ESC Procedure, 1}

endi {casel} {7/ }

putPut_esc(SetDrawindModesl +0sDrawModeRarravsError)s {set it}

if Error<>0 then writeln{’Error ‘sError:0s’ in procedure "DrawingMode™,)3

A characteristic of drawing with drawing mode Domirnant or drawing mode Erase is that if a
line crosses a previously-drawn line, the intersection will be the same “‘color” as the lines
themselves. When drawing with drawing mode Conrlement, and a line crosses a previously-
drawn line, the intersection becomes the opposite state of the lines. In other words, the pixels
being defined by the line being drawn are exclusively-ORed with the pixels already on the
screen. For example, assume a black background (like right after calling CLEAR_DISPLAY?).

1 There are actually four drawing modes that you can select: however, two of them, dominant and non-dominant, are identical on
monochromatic displays. See the section called Writing Modes and Color in the Color Graphics chapter for a description of using non-
dominant mode on color displays.

2 There is a way to clear the screen to white, also. Set entry number 0 in the color table (use the SET_-COLOR_TABLE procedure) to anything
which has a luminosity greater than 0.5.

55

56 Miscellaneous Graphics Concepts

You invoke a drawing mode Camrlemernt. then draw a pair of intersecting lines. When the first
line is drawn, all pixels are off, so the line being drawn causes all pixels to be turned on along its
length. However. when the second line is drawn, it will turn on pixels until it intersects the first
line. At that point. the pixel is on, so it gets turned off. After that, the rest of the pixels are off, so
they are again turned on.

This concept is illustrated by the program DrawMdPrg (found on file “DrawMdPrg” on the DGLPRG:
disc). The listing is given in the appendix so you can see how it works, but since it is a dynamic
display, and constantly changing, it makes little sense to show a snapshot of it. The first
statement of the main program (DrawMode:=Dominant i) defines the type of operation the prog-
ram will exhibit. If DrawMode equals Camrlement, all lines will complement, because the two lines
in the infinite loop (the while true loop) which select drawing modes only modify the drawing
mode is if is Deminant or Erase. Otherwise, the drawing mode is not changed. When you wish to
change the program to the drawing/erasing mode, change the first statement of the main
program to say DrawMode:=Dominanti. Then the two drawing-mode-selecting lines will select
drawing modes Erase and Dominant, respectively.

In complementing mode, a pixel is on only if it has been acted upon by an odd number of line
segments.

Faster Drawing Procedures

In the previous section, CRT Drawing Modes, the routines INT_MOVE and INT_LINE were used
for moving and drawing, rather than the MOVE and LINE procedures used previously. The reason
for the existence of these routines is that they exhibit higher execution speed. This increase in speed
is obtained because the procedures do integer arithmetic, which is much faster than real arithmetic.
The only restriction on parameters is that they must be 16-bit signed integers; that is, a subrange of
INTEGER whose range is —32 768 through 32 767. There is a TYPE defined in the module
DGL_TYPES called GSHORTINT which is this subrange of INTEGER.

Depending on the application, they may be up to three times faster than their counterparts
which deal with real numbers. However, the increase in speed will only take place if the
following three conditions are met:

® The display must be a raster device;

® The window bounds must be within the range of —32 768 through 32 767; and

® The window must be less than 32 767 units wide and high.

There are some more INT- routines available also. They are identical to the same routines
without the INT_ at the beginning of their names except for the restriction mentioned above.

MOVE — INT_MOVE

LINE — INT_LINE
POLYGON — INT_POLYGON
POLYGON_DEV_DEP — INT_POLYGON_DD
POLYLINE — INT_POLYLINE

Miscellaneous Graphics Concepts 957

Selecting Line Styles

When a graph is attempting to convey several different kinds of information, colors are often
used: the red curve signifies one thing, the blue curve signifies another thing, etc. But when only
one color is available, as on a monochromatic CRT, this method cannot be used. Something
that can be used, however, is different line styles. Even on a monochrome CRT, it makes sense
to say that the solid line signifies one thing, the dotted line signifies another thing, and the
dashed line signifies still another.

The DGL procedure SET_LINE_STYLE is used to select from the available line styles. The single
argument is an integer whose value is 1 through the number of line styles supported on the device
currently being used. If using an HP-GL plotter, look under the LT (Line Type) instruction to
determine how many line styles are supported.

The CRT supports eight line styles:

— M0 L) s 0O
l

As you can see, line style 1 draws a solid line. Line styles 2 through 8 are patterned sequences
of on and off. For all line styles, the computer remembers where in the pattern a line segment
ended. Therefore, when you start drawing another line segment, the line pattern will continue
from where it left off. If you want the pattern to start over, just re-execute the line style
procedure.

58 Miscellaneous Graphics Concepts

Plotters also have different line styles to select from. For example, the following line styles are
available on the HP 9872 and HP 7470 plotters.

HP 9872 and 7470 Line Styles

As another example, the HP 7580 and HP 7585 plotters have two different ways of plotting most of
their line styles: continuous and vector-adjusted. Lines drawn with a continuous line style are drawn
such that every line segment drawn continues the pattern from where the previous segment left off.
If a line segment is short enough and the next section of the pattern is the space between marks,
there may be nothing at all drawn for a particular line segment. Vector-adjusted lines are forced to
have the middle of the main drawn section at each endpoint of the line segment. See the line
segments below.

e —— : H![’"_]JHI
___________________________ u:-_—_w:u

oo T T T T T ~ |
—————————————— IM—UH'

13
12
11
10
9
g ______________ VECTOR ADJUSTED
6
5
4
3
2
1

CONTINUOUS

HP 7580 and 7585 Line Styles

Miscellaneous Graphics Concepts 59

Isotropic Scaling

It was mentioned in the last chapter that there were two different types of scaling: isotropic and
anisotropic. Isotropic scaling means that one unit in the X direction is equal in length to one
unit in the Y direction. Anisotropic means that one unit in the X direction does not necessarily
equal to one unit in the Y direction.

We dealt with anisotropic scaling in the last chapter by calling the DGL procedure SET_
WINDOW. For the task we were working on at that time, anisotropic scaling was the best
choice. However, when drawing a picture of a object, or drawing a map, is is very desirable to
have isotropic scaling, so the representation of the object is not distorted.

There is a way to cause isotropic scaling to be invoked. First, comparisons of the aspect ratios of
the viewport limits and the window limits must be made. Then some extra room is allowed in
either the X direction or the Y direction (but not both). The amount of extra room is just the
precise amount to cause the requested window to be isotropically scaled into the viewport.

Following is the listing of an algorithm to set a window isotropically.

const
YiewportLimits= 4515 {mnemonic better than madic number?l
tvre
LimitOrder= (UxminYxmaxsWyminsUymax) i
LimitTypres= array [LimitOrder]l of reals
var
Pac: packed array [1,,1] of chars {\ +ivsundry variables }
Tarrav: array [1+.11 of inteders { \ needed by the "ina_ws" }
Yiewrort: LimitTyres { / procedure, called to det }
Error: inteders { / window limits. }
Wxrandes Wyrande: realt {X/Y rande in window (world) coordinates?
Uxrande, Uyrande: reals {%/Y¥ rande in viewrport (virtual) coordinates?}
Wratios VYratio: reals {aspect ratios of window and viewrPort}
Wxmidy Wymid: reals {H/Y mideoints of windowl}
WVratio» VYratio: reali {ratios of the ratios?}
Multirplier: reali {the amount to multiply the semirandge by}

L]
L]
[]
inq_ws(ViewportLimits »0,0+4Pacslarray+YiewrportsError)i {det viewport limits?}
if Error<:0 then
writeln(’Error “sError:0y’ in Procedure "Show",')3

Wxrange:=Wxmax-Wxmini {rande of ¥ in desired window}
Wyrande:=Wymax-Wyminj {rande of ¥ in desired window?}
Wratio:=Wxrange/Wyrandei {aspect ratio of desired window}
Uxrandes=ViewportIVxmaxl-YiewrortiVxminli {rande of X in current viewport?}
Uyrande:=YiewportiVymaxl-YiewrortiVyminli {rande of Y in current viewrort?’
Yratio:=Vxrande/Yyrandes {aspect ratio of viewport}
if abs{Vratio)<abs(Wratio) then bedin {need more room on top and bottom}
Wymidi=Wymin+Wyrange*0,53 {Y midroint in desired window}
WUratio:=abs(Wratio/VYratio)i {ratio of aspect ratios}
Multipliers=Wyrande*Q,5*%WWratios {what the Y rande must be extended bv}
Wymini=Wymid-Multirpliers {new minimum ¥ for window?}
Wymax:=Wymid+Multirliers {rnew maximum ¥ for window}

end

60 Miscellaneous Graphics Concepts

else bedgin {need more room on right and left}
Wxmid:i=Wxmin+Wxrange*0,313 W omidpoint in desired windowl}
Uratio:=abs(Vratio/Wratio)? {ratio of aspect ratios?
Multiplier:=Wxrange*0,S*Ulratios {what the ¥ rande must be extended by}
Wxmins=Wxmid-Multirliers {riew minimum X for window?l
Wxmax:=Wxmid+Multirliers {rew maximum X for window?}

endy {vratioiwratio?}

set_window(Wxmin sWxmax »WyminsWymax)s {set window with twiddled Pparameters?}

Following are two example outputs from the program ‘“‘IsoProg™ (found on a file of the same
name on the DGLFRG: disc) which demonstrates the isotropic scaling routine. The user is asked
to specify Xmin, Xmax, Ymin. and Ymax for the isotropic units. The specified area is mapped
into the viewport area isotropically, adding extra space to either the X or Y direction, whichever
is needed. There is a dotted-line frame around the screen limits, and the requested limits are
shown in a solid-line grid. The space added is outside the solid-line grid. In both cases, the
whole screen was used for the viewport.

In the first example. the requested values were 0 to 6 in X, and O to 8 in Y. Since the aspect ratio
of this window is less than the aspect ratio of the viewport, some extra room is needed in the X
direction, as shown.

Miscellaneous Graphics Concepts 61

In the next example, the requested values were 0 to 7 in X, and 0 to 4 in Y. Since the aspect
ratio of this window is greater than the aspect ratio of the viewport, some extra room is needed
in the Y direction, as shown.

The program that produced the two preceding outputs is listed in the appendix.

62 Miscellaneous Graphics Concepts

Axes and Grids

For many data-display graphs. axes along the edges are sufficient to get the message across.
But if your graph needs to be read with more precision than axes afford, you can use a grid. A
grid is a logical extension to axes, with some differences. The differences are:

e The major tick marks extend all the way across the clip limits. and

e The minor tick marks intersect in small crosses over the entire surface of the soft clip limits.

There is a program called “‘AxesGrid” on the DGLFPRG: disc which will help you understand
how to write your own grid-drawing routine. It is similar to the axis procedures. except for the
two differences noted above: the maijor ticks extend across the entire soft clip area (it calls
CLIPDRAW). and the minor ticks for X and Y intersect in little crosses between the grid lines.

The following program shows the differences between:

® a pair of axes by themselves,
® a sparse grid.
® a dense grid. and

® a sparse grid with two pair of axes.

f)

TPPPPUTPPTY PRVYY FVPUT PRPOY FUVEY FUPY FHYOY FYVOY RVPY FEVTY FOVTY PUVON PYONN |

L RS CEER N R RSNt RN, , . A) , . . :)

Note that some care must be taken to ensure that the minor tick marks in a grid are smaller than
the distance between them. If they are not. the minor tick crosses drawn by the grid procedure
would have overlapped. The end result would have been a grid with even the minor ticks
extending all the way across the soft clip area.

Miscellaneous Graphics Concepts 63

As the lower left graph shows, there is a way to get the best of both worlds—accurate interpola-
tion and lack of clutter. If you want to be able to estimate the data values very accurately from
the finished plot, but also want to prevent the plot from appearing too “‘busy’’, or cluttered, it
can be done. The grid drawn has somewhat sparse major tick marks, but very many minor tick
marks. The point of interest is that the minor tick length parameter is reduced to virtually zero.
This causes the tick crosses (the little plus signs) to be reduced to mere dots. Using this strategy
allows easy interpolation of data points (to the same accuracy as typically used in axes), but
does not clutter the graph nearly as much as normal ticks would. In fact, had we used the
previous minor tick length, the length of the lines making up the tick crosses would have been
greater than the distance between the ticks. Thus, they would have merged together to make
solid lines, extending all the way across the graph. This would greatly clutter the graph.

Be aware when using this strategy of making huge numbers of degenerate tick crosses that the
computer still thinks of them as crosses, which means that both the horizontal and vertical
components must be drawn. This looks to you like drawing and then redrawing each dot.
Therefore, when sending this type of grid to a hard-copy plotter, do not be averse to starting
your plot, and then going on vacation.

In the lower right quarter of the plot, there is another way to reach a compromise between ease
of interpolation and lack of clutter. Axes are used on all four edges, and a sparse grid is drawn
with major tick marks every second of the axes’ major tick marks.

Note that two pairs of axes were drawn. The parameters are identical save for the position of the
intersection. The first pair of axes intersect at the lower left corner of the soft clip area. The
second pair of axes intersect at the upper right corner of the soft clip area.

Also note that when a grid is drawn, the frame around the window can usually be removed
(depending on the Major Tick Count); the lines around the soft clip limits were being drawn by
grid procedure anyway.

All of the above have advantages; there is no one approach which is always best. On many
occasions, an application is defined such that there is no question as to which procedure to use.
Other times, however, it is not such a cut-and-dried situation and you want to weigh the
alternatives carefully before setting your program in concrete. To aid you in the decision, here
are some pros and cons to the approaches above.

Advantages to axes:
® Axes execute much faster than grids. This is for two reasons. First, there is much less
calculating the computer must do, and second (and more important), there is much less
actual drawing of lines the computer must do. This becomes especially evident when
sending a plot to a hard-copy plotting device where physical pen must be hauled around.

e [t does not clutter the plot as much. Reference points are available at the axes, but there is
no question about where the data curve is. When using a grid, it is possible to lose the data
curve among the reference lines if it is close to being horizontal or vertical.

64 Miscellaneous Graphics Concepts

Advantages to grids:
e [nterpolation and estimation are much more accurate due to the great number of reference
ticks and lines: one need not estimate horizontal and vertical lines to refer back to the axis
labels.

e Usually there is no need to explicitly draw a frame around the grid area to completely
enclose the soft clip limits. as is often desired, because the major tick marks from the GRID
procedure would probably redraw the lines. Of course. this is dependent upon the Major
Tick count.

Logarithmic Plotting

In many fields, there are ranges of valid values which are so large that not only is isotropic
scaling out of the question, but any kind of linear scaling—even anisotropic—is virtually use-
less. To successfully depict these kinds of data, one or both of the axes can be logarithmic
scales: that is, the data points themselves are not plotted, but the logarithm of each data point is
plotted. For example:

e In seismology. earthquake intensity is measured in the logarithmic Richter scale.

e [n acoustics. both sound intensity (decibels) and frequency (octaves) are dealt with in
logarithmic scales.

e [n astronomy. a Hertzsprung-Russell diagram graphs both the luminosities and surface
temperatures of stars logarithmically.

e Also in astronomy, black-body radiation curves are plotted logarithmically.

For logarithmic plots, logarithms (from here on referred to as logs) to the base 10 are most often
used'.

Homemade Mathematical Functions

To deal with logs. we need to write two mathematical routines which are not provided in the
language.

Taking a Number to a Power
First. we need to be able to exponentiate—take an arbitrary number to an arbitrary power. We
can use an identity function of logarithms to do this:

XY = e,v In (%)
This is easily done since Pascal does have functions to return the log and antilog® in the
Napierian® base e. The function to return the natural log is L.N, and the function for returning the
natural antilog—e to a power— is EXP.

1 An exception 1o this is the frequency example in acoustics mentioned above. in which octaves deal with powers of two.

2 The 1og,, 1000 3 because 107 1000 The antilog,, 3 - 1000 because 107 1000.

3 The Napierian base ¢ is the base of natural logarithms. Its value is T 011 118 1204 1311 14" and equals approximately 2718 281 828

Miscellaneous Graphics Concepts 65

The Logarithm to Any Base

The next function is slightly more complex. We needed a function to calculate the common
logarithm (log to the base 10). We used another identity function of logarithms which allows
one to calculate the log of any positive number to any positive base not equal to 1—even
fractional ones. We used a special case of this to calculate the common logarithm, or log to the
base 10:

y = In(x)/In(b)

Since this allows us to calculate the log of any (positive) number to any (positive) base not equal
to 1, we will define the base to be 10. Now we can deal with common logarithms.

Back to Logarithmic Axes...

When you are doing logarithmic axes using logs to the base 10, you need to specify the minimum
and maximum in decades. For example, say you want to make logarithmic axes from 0.01 to 1000.
This is 102 to 10°, therefore, the will be five decades represented. To draw a logarithmic X axis:

for Decade:=-2 to 3 do bedin
if Decade<3 then UnitMax:=9
else UnitMax:=13
for Units:=1 to UnitMax do bedin
Hi=Decade+LoglO(Units) i
move (X »¥min)i
drawl{Xs¥max)i
ends {for Units}
ends {for Decade?}

The statement starting ‘‘if Decade<3”’ is there because we want the units to go from 1 to 9' for
every decade except the last one, for which we only want the integral power of ten.

1 Each decade goes from 1 to 9. not from 1 to 10, because 10 will be covered by the first iteration on the next decade.

66 Miscellaneous Graphics Concepts

Following is a short program (found on file “LogPlot”” on the DGLPRG: disc) which draws
logarithmic grid. and plots a curve on it. A logarithmic grid is merely a logarithmic axis with long
tick marks.

. J

prodram LodPlot(Kevboardsoutput)s
import dgl_libs

const
Kmin= -4 { A\ >
Kmax= 23 { \ Decade minima ¥
Ymin= 053 { / and maxima. b
Ymax= 33 {7/ +
Crt= 33 {device address of gdrarhics raster}
Controls= 0% {device control wordi idgrored for CRT}
type
RDataTvpes= array [1,,15] of reals
const
Hualues= RDataTyrel0,0003y 0,0009, 0,004, 0,008, 0,01y 0,07y 0,22, 0.5,
1+2y 2.6+ 8.9, 18,6y 34, 56+ 9713
Yualuess= RDataTveell.1y 4.3, 13,38 45,9 60,33y 130.7, 346, 690.4,
B899, 933, 903 841, 7204 505, 3901;
var
Error: inteders {displav_.init return variable’ O = gk}
Decade: inteders:
Units, UpperLimit: inteders
Ky Y reali

I: intederi

Miscellaneous Graphics Concepts

$Padad {EFFFFEEFRREREERERERRRRRNRRERRRFRFFRRRRRRRERRERRRRRRRRR R AR RN AR RN RRR)
function Lodl0(¥: reall): real}l

U e ¥
{ This furction returns the lodarithm to the base ten of a number. ¥
e e R R }
const

Log_10= 2,302585002991 {log to the base e of 10}
bedgin {function "Logl0"}
Logl0:=1n(X)/Lod103
endi {function "Logl0O"}
Spaged {FFFFEERERRERRRRERRR R ERERERERERRFRRRRRR NN E R RN RN RN RN ERRRRRREERNN)
bedin {bodv of prodram "LodgPlot"}
drarhics.inits {initialize the drarhics system}

displav_init(CrtsControlsError)s
if Error=0 then begdin
set.aspect(S11,389)}
set_window{(Xmivn sXmax ¥min»¥Ymax)i
{=====z Draw and label lodarithmic X-axis drid ========z=z====z==z=z====z=z=====z=z==}
for Decade:s=X¥min to X¥max do bedin {one decade eauals one mantissa cveclel}
if Decade=X¥max then UpperLimit:=
else UpperlLimit:=83
for Units:=1 to Upperlimit do bedin {do 2-9 if not last crvcle}
{1=Decade+Log10(Units) i
move{ X ¥min) i
line(Xs¥Ymax)i
endy {for units}
endy {for decade?}
{=z=z===z Draw and label lodarithmic Y-axis grid ===z==z=z=z=z=z=zz=z=s==s===s=======z:zz}
for Decade:=¥min to Ymax do bedin {one decade eauals one mantissa cvclel}
if Decade=Ymax then UpperLimit:=1i
else UpperLimit:=93
for Units:=1 to UpperLimit do bedin {do 2-9 if not last cvcle}
YizDecade+Logl0(Units) 3
move(XminsY¥)
line(Xmax¥) i
ends {for units?
ends {for decadel
{z=zz==z Draw the lodarithmic data curuve S=ZZ=ZZRCCEECSCSSZZZZCSCCZZITITSSSSZIZSSSS=SS)
for I:=1 to 15 do bedin
if I=1 then move(Lodl0(XWalues[I1)Logl0(YvalueslI))
else line(Log10(¥Values[I1)sLoglO(YvalueslI1))i
endi {for i}
endi {Error=07} {end of conditional code?}
drarhics_term} {terminate 9grarhics librarv}
end. {prodram "LogPlot"?}

67

68 Miscellaneous Graphics Concepts

Storing and Retrieving Images

If a picture on the screen takes a long time to draw, or the image is used often, it may be advisable
to store the image itself—not the commands used to draw the image—in memory or on a file.

Note

Because the location of the Model 237’s frame buffer may vary, storing
and retrieving images on the Model 237 is somewhat more complex
and exceeds the scope of this manual. Therefore, application of the
GSTORE procedure to the Model 237 is not discussed here.

Image transfer from the graphics memory to a user array can be done by overlaying an array
directly on top of the graphics memory, i.e., forcing the starting address of a user array to be the
same as the starting address of graphics memory. The user array is also the same size as the
graphics memory. First, you must have an INTEGER array (32-bit integers) of sufficient size to hold
all the data in the graphics raster. This amounts to an array size of 7500! on the Models 216, 220
and 226, 6240 on the Models 217 and 236, and 24 960 on the Model 236 Color Computer. This
array holds the picture itself, and it doesn’t care how the information got to the screen, or in what
order the different parts of the picture were produced.

In the following program, the image is drawn with normal plotting commands, and then, after the
fact, the image is read from the graphics area in memory, and placed into the user array, using the
procedure GSTORE. After the array is filled by the GSTORE procedure, a curve is plotted on top of
the image already there. Then, turning the knob changes the value of a parameter, and a different
curve results. But we do not have to replot the grid, axes and labels. We merely need to copy the
data containing the image (which has everything but the curve and the current parameter value)
back into graphics memory by calling the inverse procedure, GLOAD. This allows the curve to be
changed almost in real time. This program is contained in file “‘GstorProg” on the DGLPRG: disc.
Note that only the size of the data array must be decreased if this is to work on a Model 216, 220, or
226. If this is to work on a Model 236 Color Computer, both the array size must be increased and
(because of the increased array size) it must be accessed dynamically—the NEW statement and
pointers.

Note that the $SYSPROG ON$ compiler directive must be in the program. The reason for this is
that we are using the compiler’s ability to force an array to be in a particular area in memory. We
declare an integer array whose location in memory is exactly that of the graphics raster memory.
Thus, when we deal with the array, we are dealing with the graphics memory, which has the current
image in it.

1 The reason the the lower-resolution displavs require more memory for image storage than the higher-resolution displays is that the Models
216, 220, and 226 use only the odd bytes of the words. Thus, only the least significant eight bits of each sixteen-bit word are used; the most
significant eight bits are zeroes.

Miscellaneous Graphics Concepts 69

To write a program such as this, which stores a graphical image and reloads it, there are several
housekeeping things which must be done. Two constants must be defined. First, you must know
where in the physical memory of the machine the graphics memory resides':

const
GRasterAddr= hex (/330000°)3

Next, you must know how large the graphics memory is (the size of the graphics raster is
expressed in 32-bit words):

const
GRasterSize= B2403

Now, we must declare a type of which the variable being overlaid on the graphics memory will
be:

tvpe
GRasterType= array [1.,.GRasterSizel of inteder)

Next, overlay a variable directly on top of the graphics memory. The constant in the brackets
immediately after the variable name forces the address of that variable to the specified location
in memory. This can only be done if the $5YSPROG ON$ compiler directive has been encoun-
tered. Note that if a Model 236 Color Computer is being used the array size exceeds the total
amount of global memory space available, so the variable must be created dynamically; use the
NEW statement and pointers.

var

GRaster[GRasterAddrl: CRasterTvped

And finally, the user’s variable into which the graphics memory will be placed. Although it is of
the same type as the variable GRas t e r above, we will let the machine figure out where to putit:

Screen: GRasterTrprel

After all these declaration have been set up, it is a trivial matter to store the graphics image into
the user array:

Gstore(Screen) i

Loading a screen image is just as trivial:

Gload(Screen)s

Again, this program is on file “‘GstorProg” on the DGLPRG: disc, and a listing of ther program is in
the appendix. It stores and reloads the graphics image to and from a user array. Of course, it
also defines the necessary support constants, types, and variables for the GLOAD and
GSTORE routines. It draws a blackbody radiation curve for the current temperature.

1 Both the size and the address of the graphics memory in your machine is dependent on the model:

Models 216, 220, and 226 Model 217 and 236 Model 236 Color
Graphics memory address $530000 $530000 $520000
Graphics memory size 7500 6240 24960

The addresses are expressed in hexadecimal and the sizes are expressed in 32-bit integers.

70 Miscellaneous Graphics Concepts

Note that this program puts into use many of the concepts previously discussed in this chapter:

e Conversion from virtual coordinates to world coordinates;

® Specifying character size with a size in virtual coordinates and an aspect ratio, angular
specification of label direction, and label justification;

® Turning the alpha raster off (nonbit-mapped displays)
® [ogarithmic axes and grid;
® [mage storage and retrieval.

4)
Blackbody Radiation

Lg% Temperature (K): 1008
c
0 18%°
o
©
o 18" .
x

[™~

& F NN
° 1o} I <
>
i \\\\
¢ 10° <
b ™
S N

18° N

\\
127 b
107 1273 1872 187! 1@° 1@? 182 183
Wavelength (microns’
_ _J

The first time the curve is displayed, it will look like the preceding display. Every time you hit a digit
key, a new curve will be drawn, based on the current value of Temrerature.

Miscellaneous Graphics Concepts 71

Data-Driven Plotting
Many Lines in One Step

In the cases where the data to be plotted is in arrays, it can plotted in one statement by using the
POLYLINE procedure. The X data must be in one array, and the Y data in another array. Both
arrays must be one-dimensional arrays of reals. Below is a program showing how to plot an X
data array versus a Y data array.

()

_ _J

prodram PLineProd{outprut)i
import ddl_libsddgl_inasj

const
CrtAddrs= i
ControlWord= 03
type
RDataType= array [0.,101 of reals
const
Hualues= RDataTveel0+14+2:+3+4+5,6+7+8:8,+1011
Yvalues= RDataTrrel0+24+1:4+3+3+1+5+3+44613
var
ErrorReturn: intederi
I RDataTvpes
FPades {ERFFRERRERRRNERERRRERRF R RRRFRRRRERRERRERRRERNR KRR KRN RN NN R AR RRRERRN)
bedin {prodram "PlLineProg"}

drarhics_inits
displav_init(CrtAddrsControlWord ErrorReturn);
if ErrorReturn=0 then bedin
set.aspect(511,389)3
set_window(Qy10,0,10)1
move (0s0)3 line(0,10)3% line(10,10)%F 1ine(10,0)35 line(0:0)3
Hi=Xvaluesi Y:=Yualues)
polvline(11s%sY)3
endi {ErrorReturn=07}
grarhics_term?
end, {prodgram "PLineProg"}

72 Miscellaneous Graphics Concepts

Note that the X data need not be steadily increasing values so as to make a broken-line chart
like above. It could just as easily be used for drawing pictures of objects where both X and Y
vary in an unpredictable way. However, if both X and Y are going to change, you’ll probably
want to be able to control the pen status—you’ll want to lift the pen and drop the pen at will.

Drawing Multi-Line Objects

Often, when plotting data points, they do not form a continuous line like the broken-line charts
we've seen before. One must have the ability to control the pen’s status (up or down), to allow
drawing of several different, disconnected parts of an image in one step. For this need, there is a
DGL procedure called POLYGON. The fourth parameter in the POLYGON procedure is the
operation selector, and its function is to tell the computer to draw or not draw a particular line. It
also specifies where individual polygons start.

When plotting an entire array with the polygon statement, the fourth parameter is defined in the
following manner. It must be of type INTEGER. The resultant action for the various operation

selectors are:

Polygon Operation Selectors

Operation Resultant Action
Selector
0 Do not draw the edge extending from the last ver-

tex to this one.

1 Draw the edge extending from the last vertex to
this vertex.
2 This vertex is the first vertex of a member polygon.
Note

Although the POLYGON procedure heading declares the incoming
arrays to be of type GREAL_LIST or GSHORTINT_LIST, you can-
not declare your own variables this way. Declare your variables a
your own data type: arrays of the appropriate size of reals and short
integers (16-bit integers: i.e., ~32768, . 32757). If you import the
module DGL .. TYFES, you can use the type GEHORTINT.

Following is a program (file “‘PolyProg’” on DGLPRG: disc) which uses the POLYGON proce-
dure. It draws a LEM (Lunar Excursion Module). The first parameter specifies how many points
there are in the arrays. There are three arrays used: two one-column REAL arrays for the X and
Y data, and a one-column INTEGER array containing opcodes.

Miscellaneous Graphics Concepts

_

)

prodram PolvProg(output)s

imPort

dgl_libsdgl_tvressddl_poly,ddl_inaj

const
MaxPoints=
Crt=
Control-=

type
Reals=
Word=
Intederss=

const
Kvalues=

Yvalues=

OrCodes=

var
Error:
I-
Lem®s LemYs
OrSelectors:
Points:

{access the necessary

{prodram name same as file namel

procedures’

273 {number of Points in arravs}
33 {device address of grarhics raster}
03 {device control wordi ignored for CRT}

array [1++MaxPoints] of reals
-32768..,327673
array [l++MaxpPoints] of Words

{16-bit word)
{to contain

Realsl 145y 2.5y 245y 1454-1454-2:54-2:51-1.5,
—2059 2057 :05!-205)-2059
~240-0459-2454-03,04-4,0
2057 4059 205! 50(’ ll.Or
"‘DQS, 10()) 100’ (.)05]1

Realsl 1.0 2,05 340y 4,0y 4,0y 3.0y 2.0 1,0,
1 (., 1h0=2,04-2,0y 1,0,

S2000-440y 0,0-4,0,-4,0,
~2000-440 0,04-4,0,-4,0,
- .

“2009-3409-3404-2,013
Inteders[24191 11914141
2al919141
291014201
291414201
291414113

inteders {display._

inteders {loor control variable}
Realsi {s0 we can Pass it to
Intederss {ditto}

inteders {ditto}

{to contain X and Y values?}

or, selectors?}

{Octadon’
{Box1}

{Left leg}
{Ridght leg}
{Nozzle}
{Octagonl
{Box?}

{Left leg}
{Right leg}
{Nozzle}
{Octagon’
{Box?}
{Right led}
{Left leg}
{Nozzle}

init return variabhles 0 = ok}

"polvdon"}

73

74 Miscellaneous Graphics Concepts

$pPpades LREFRFREEERRRREERRRE R R R R R AR A RRR RN RRERARERR R AR AR R R R KR RN NN}

bedin {body of prodgram "PolvProg"}

Lemi{:i=Xvaluess { N\ Put into variable array so 1}

LemY:i=Yvaluess { » it can be rPassed bv }

OpSelectors:=0prCodes { / reference into the DGL Proc,}

Points:=MaxPoints}i {Put constant into an arravy variable?}

drarhics_inits {initialize drarhics librarv?}

displav_init(CrtsControlsError)s {initialize CRT}

if Error=0 then bedin {if no error occurred,.,?}
set._aspect(311,388)1 {use the whole screen?’
set_window(-13+13+-10410)3 {invoke isotrorpic units}
polvdon(PointssLemdsLemY DrSelectors)s {draw the lines?}

endy {Error=077} {end of conditional code?}

draphics_terms {terminate drarhics librarv?}

ends {erodram "PolvProg"} {end of Prodram?}

What’s in a Polygon?

That's a good question, and brings up the crucial difference between POLYGON and
POLYGON_DEV DEP (as well as the INT versions of the same). The key to understanding the
two classes of polygon is the concept of device independence. Polygons generated by proce-
dures that lack the DEV_DEP (or DD) suffix are device independent, and will always be filled,
with as close to the fill specified by the polygon table (lines or crosshatched lines at some
specified density) as the device they are being drawn on is capable of producing. Thus the lines
used for a fill on a CRT may have visible jaggies, and the lines used on a 7580 plotter will not,
but both of them will produce polygons filled with lines.

So what happens with POLYGON_DEV_DEP? The “DEV_DEP’ calls specify a device depen-
dent polygon. The fastest, most appropriate fill possible on the device is used to fill a polygon.
On the CRT, this is a dithered area fill (dithering is discussed in detail in the "“Color’” chapter).
On the plotter, the edge is drawn with the current line color attribute if edge is specifed in the
operation selector array and enabled in the polygon table. If the polygon edge attribute is false
and the operation selector edge attribute is true, the polygon edge is drawn with the current
polygon interior color attribute and polygon linestyle. It is worth noting that in this case, if the
current polygon interior color attribute is set to O (the background in the color table), the
polygon will not be visible.

When to Use Which Polygon?

Why are there two polygon fills? The two polygon calls address different valuable characteristics
of the system. The POLYGON call tries to give a consistent representation, regardless of what
display device is being used. The POLYGON_DEV_DEP calls are faster. You give up consisten-
cy by using the device dependent calls, as well as control of drawing mode (all device depen-
dent polygons are drawn in the dominant writing mode). The choice is yours: if you want speed
or control of drawing mode, use the device dependent calls—if you want consistant presenta-
tion of the image and/or control of the drawing mode. use the device independent call.

Polygon Filling

When drawing a polygon, whether it is filled or not is an attribute of the polygon. The filling
attribute itself has other attributes; namely, method (dithered/hatched), density (0-100%), and,
if hatched, hatching direction (—907-90°) and perpendiculars (true/false).

Polygons can be filled two different ways. Filling allows you to shade the polygons to various
shades of gray.

Miscellaneous Graphics Concepts

The first method of filling is to draw lines across the polygons; crosshatching. This is selected
with the SET_PGN_STYLE procedure. Various densities of shading can be achieved through
crosshatching, depending on both of the following:

® The amount of space between the crosshatching lines;
and

e Whether or not there are perpendiculars.

The other method of shading on a monochromatic CRT is called dithering. Dithering is a more
accurate way to get shades of gray on a black-and-white CRT whose electron gun is either fully
on or completely off. Dithering is accomplished through selecting small groups of pixels', a
four-by-four square of them on the Series 200 computers. Various pixels in the dithering box
are turned on and off to arrive at an ‘‘average’ shade of gray. There are only seventeen
possible shades because out of sixteen pixels (the 4 x 4 box); you can have none of them on,
one of them on, two of them on, and so forth, up to all sixteen of them on. And it makes no
difference which pixels are on; the pattern for each level is chosen to minimize the striped or
polka-dotted pattern inherent to a dithered image.

Crosshatching is accomplished by drawing many lines, and lines are drawn taking into account
the current drawing mode (dominant, erase, or complement). One reason that this is important
is that you can draw a complementing cursor with a call to the POLYGON procedure. Dithering

does not deal with lines, therefore, the current drawing mode is ignored when doing a dithered
fill.

Note

Polygons to be filled which extended over the edge of the plotting
surface are completely filled-including all the area off the plotting
surface. If a great deal of the polygon is invisible, then, it may appear
that the machine is hung?, but in reality, it is merely doing a lot of
calculations which do not affect the visible image at all.

1 The word “pixel”” is a blend of the two words “picture element,” and it is the smallest addressable point on a plotting surface. A Model 236
computer has 512 x 390-pixel resolution; thus there can be no more than 512 dots drawn on any row of the CRT, or 390 dots drawn in any
column.

2 “Hung,” in this context, is short for ‘*hung up.” It is a computerese term which means that the machine has entered a state, usually
unanticipated. in which the machine becomes unresponsive, and drastic measures are often required to correct it.

75

76

Miscellaneous Graphics Concepts

Here is another program which draws the LEM, and fills the polygons in two different ways. On

the left, it is filled by crosshatching: on the right, it is filled by dithering.

(

)

_
prodram FillProd{output)s {program name same as file namel
imPort
d9l_libsdgl_tveesydgl_polvddl_inai {access the necessary procedures?
const
MaxPoints= 273 {number of points in arravs?’
Crt= 33 {device address of grarhics raster?
Control= 03 {device control wordi ignored for CRT}
type
Reals= array [1..MaxPoints] of reali {to contain X and Y values?}
Words= -32768,.,327673% {16-bit word?}
Iritederss= array [1l..Maxpoints] of MWords {to contain orP. selectors}
const
Nuvalues= Reals[1.5+ 2,54 2,5y 1.54-1.5+-2.54-2,3,-1,5y A{Octadon}
~2.5% 2.5y 2.59-2059-2.5 {Box?}
SR8 =445 -2454-3,00-4,0, {Left ledg?
2099 445y 245 540 4.0, {Right leg}
~0,39-140y 140y 0,313 {Nozzle?
Yvalues= Reals[1.0y 2,0 3.0y 4.0y 4,0y 340y 240 1,0y {Dctagon?
100y 14004=2,04-2,0y 1,0, {Box?
S2 0 -0,0y 0,0,-4,0,-4,0, {Left leg}
“2.09-4,0 0,04-4,04-4,0 {Ridght ledg}
~200=3409-3.04-2,013% {Npzzle?}
OpCodes= IntedersC2y1 13191914141 {0ctadont
23114141 {Box?}
2atal 4201 {Ridht leg}
2ala14241 {Left leg}
2al019115 {Nozzle}
var
Error: inteders {displav_init return variableid O = ok}
I: inteders {loor control variable?
LemXy LemY: Realss {s0 we can pPass it to "polvgon"}
OrSelectors: Intederst {dittol
Points: inteders {ditto}

Miscellaneous Graphics Concepts

$PagEt {HEFEEEREEREEAERRAFRFRRRRRFRRFRRE RN AR RERRE RN RN AR AR R ERRHERRRR T

bedin

LemX:=Xvaluesi

LemYs=Yvaluesi

OprSelectors:=0rCodesi

Points:=MaxPointsi

drarhics_inits

display.init{(CrtsControl+Error)s

if Error=0 then begdin
set_aspect(311,389)3
set_window(-7,3+18.5:-10,10)3
set_pPdn_style(ld);

polvdon{Points LemXsLemY OrSelectors)i

set_window(-18.5474+-10410)3
set_pdn_table(14,0,51,0,1)3

set_color.table(1,0,125,0,125:0.,125)

set_pgn.color(l)}

polydon_dev_depr(PointsLemXLem¥ 0rSelectors)s

endsy {Error=07}
drarhics.term’
ends {program "FillProsg"}

{bodv of program "FillProg"}
{ \ Put into variable array so }
{ » it can be pPassed by }
{ / reference into the DGL Proc.}
{put constant into an array variable}
{initialize dgrarhics librarv?
{initialize CRT}
{if no error occurred,.}
{use the whole screen}
{invoke isotrorPic units?
{crosshatched fill}

{draw the lines?}

{invoKe isotropic unitsl}

{set the "do a fill" flag}
{specify 12,57 drav scale’

{use specified "color"}

{draw the lines}
{end of conditional codel}
{terminate drarhics librarv}
{end of pProgram?’

77

78 Miscellaneous Graphics Concepts

Shading Graphs

Two previously-mentioned concepts can be combined to make broken-line charts which are
filled. That is, you can consider the curve on the graph as edges of a polygon (along with the
lower corners of the viewport), and fill the area with shading. Below is a short program which
demonstrates the combined concepts. The program is found on file "FillGraph™ on the
DGLPRG: disc.

(~)

§ Y,

prodram FillGrarh(outrut) i
import dgl_lib,y dgl_tveresy dgl_rolvs

const
CrtAddr= 31
ControlWord= 03
tvpe
RDataTvee= array [0+,12]1 of reals
WDataTvpe= array [0,.12]1 of -327G68B,.327671
const
Kvaluess= RDataTyrel0s1+2+34+546+7+8+83410,10,073
Yvalues= RDataTveel2+4+3+6+545+34739536+8,0,0171
DrperationSelectors= WDataTvrelZ2sl sl st sl sl sl sl sl slsl 1,11
var
ErrorReturn: inteders
K Ve RDataTvrei

OrSel: WDataTvres

Miscellaneous Graphics Concepts

$paded (R EEERE RN AR R R RN RN RN RN E R RN R AR AR R R RN AR AR R R R RN AR)
bedin {prodgram "FillGrarh"?}

drarhics_initi

displav_init(CrtAddryControlWordsErrorReturn)i

if ErrorReturn=0 then bedin
set_aspect(511,389)1
spt_window(0,»10,0,10) 1%
move{0,s0)3 line(0,10)3 line(10,1003% line(10,00% line(040)3
Ki=Kvaluess Yi=Yualuess OpSel:=0perationSelectorsi

set_Pdn_table(1,0,333+17.34+1)3
set_pdn_strle(i)s
palvdon(13+%+Y0rSel)i
endi {ErrorReturn=07}
grarhics_termi
end, {prodgram "FillGrarh"?}

Note that the two lower corners of the graph must be included in the definition of the polygon.
The shading is done with hatching lines, and the angle of those lines is deliberately a strange
angle to point out that you are not restricted to multiples of 45° for the hatching lines. If the plot
is to come out on a CRT, dithering may be used instead.

If the shading is going to be done with hatching lines, you may want to perform a linear
regression on the data points. Then, you can indicate the overall trend of the data by defining
the slope of the hatching lines to be the angle determined by the linear regression.

Highlighting Data Curves

You can note the location of the starting points of line segments by using the MARKER
procedure. When the procedure is called, it outputs a marker of whatever type you selected.
The valid values and what types of markers they output are listed below:

Marker Resulting Marker | Resulting
Number Shape Number Shape

. 10 0
11
12
13
14
15
16
17
18
19

O 00 ~1 O UV A W N h‘i&

HSOODXO 4+ »
OO0, W =

Marker numbers greater than 20 are device dependent. If the specified marker is larger than the
number of marker the device supports, a dot (marker selector 1) will be used.

Below is a program and its output which shows how to use the MARKER procedure. The
program can be found on the file ‘‘MarkrProg’” on the DGLPRG: disc.

79

80

Miscellaneous Graphics Concepts

_ J

prodram MarKrProd(output)}
import dgl.libsdgl_inas

const
CrtAddr= 31
ControlWord= 03
type
MarkerNumTvre= array [0,,41 of inteder:
DataTvpPe= array [0+,10]1 of inteders
const
MarkerNumbers= MarkerNumTyrelZ293+6+8+1313
Data= DataTyrel0+231:44+3+3+1435343944613
uar
ErrorReturn: inteders
Iy J: intederi
$PATET R R AR AR ERE R R R R RN R R R R R R AR RN R RN R R R RN A AR R RN RN RN R RN R RRR]
bedin {program "MarkrProg">}

drarhics_inits
display_init(CrtAddrsControlWordsErrorReturn)s
if ErrorReturn=0 then bedin
set_aspect(511,389)1
set_window(0,10,04510) 3
move (Qy0) 5 line(0,10)35 line(104+10)5 line(10,0)% line(0,40)3
for I:=0 to 4 do bedin
for J:=0 to 10 do bedin
if JOx0 then marKer(MarKerNumber[I1)3
if J=0 then move(J,DatalJl+I)
else line(JsDatalJI+I)s
endi {for J}
endy {for 1}
endi {ErrorReturn=07}
grarhics.terms
end. {prodram "MarKrProg">}

External Graphics Displays Chapter
and Plotters 3

In this chapter, we will be discussing the selection of external plotting devices. The
DISPLAY_INIT procedure will be more thoroughly covered, in addition to dumping graphics
images from a CRT to a printer. External CRTs (cathode-ray tubes), which may be connected to
your computer through a 98627A interface card, and plotters, which may be connected through
the built-in HP-IB (Hewlett-Packard Interface Bus) port in the back of your computer, will also be
discussed.

Selecting a Plotter

In the previous two chapters, the program listings contained a line which said:

displav.init{(CrtAddrsControlWordsErrorReturn}

Because the value contained in the variable CrtA4dr was 3—specifying the current console~ the
computer activated the internal CRT graphics raster as the plotting device, and all subsequent
graphics output was directed to this display. If you want a plotter to be the output device, only
the value of the variable Crtaddr need be changed. (You may also want to change the name of
the variable. It is somewhat misleading to have the address of a plotter in variable named
CrtAaddr.) If your plotter is at interface select code 7 and address 5 (the factory settings), the
modification would be:

CrtAddr:=7053

81

82 External Graphics Displays and Plotters

Dumping Raster Images

In addition to generating a hard-copy plot with a plotter, as described above, you can dump a
CRT’s raster image to a printer. This method is called a graphics dump or screen dump. It is
accomplished by copying data from the frame buffer to a printer to be printed dot for dot.

First, the image must be drawn on a CRT. Either the internal CRT or a color monitor connected by
an HP98627A interface card may be used. Since this technique dumps a raster-type image, it prints
only dots. Thus, it cannot draw a line, per se, but only the approximation of a line from the screen,
made up of dots. The dump device ‘‘takes a snapshot”” of the graphics screen at some point in time,
and doesn’t care how the dots came to be turned on or off. Thus, filled areas can be dumped to the
printer; indeed, all CRT graphics capabilities (except color) are available.

If your printer is an HP 9876, HP 2631G, HP 2671G, HP 2673A or any other printer which
conforms to the HP Raster Interface Standard, dumping a graphics image is achieved with the
OUTPUT_ESC procedure. If your active graphics display device (set with the DISPLAY_INIT
procedure call) is monochromatic, a call to OUTPUT_ESC with operation selector 52 will dump the
display if:

® The active graphics display is the console (where alpha is displayed), or

® The active graphics display is bit-mapped (i.e., is a Model 237 display or a display connected
via the HP 98627A RGB interface).

If you have a color device, all planes in the frame buffer are logically ORed. If you want more
control over the output of a color image, an operation selector of 1053 will allow you to select
individual planes from the frame buffer. The 1053 operation selector will work with the Model
236C, the Model 237 bit-mapped display, or with a color display connected via the HP 98627A
RGB interface. Since the Model 237 has only one plane, the plane designator is ignored.

The exception to producing a desirable image via this method occurs if your active CRT is a
bit-mapped display that supports more pixels than your printer has dots. In this case, the dump
starts at the upper left-hand corner of the screen and dumps as far to the right and down as there
are corresponding dots on the printer.

Both of these operation selectors sent to OUTPUT_ESC would take the image in the currently
active CRT graphics frame buffer (the internal CRT by default) and send it to volume PRINTER:. By
default the printer is assumed to be at select code 7, bus address 1. This can be changed by
modifying the CTABLE, TEXT program on the CONFIG disc. Find the line:

local_printer_default_dav = davlsc: 7+ basly dur-1y dur-113
This sets the DAV (device address vector) for the printer to be at select code (s¢) 7 and bus

address (ta) 1. By changing this line, you can alter the destination of data sent to the volume
PRINTER:!. 701 is the default factory setting for printers.

If a graphics dump operation is aborted with the (STOP) key, the printer may or may not terminate
its graphics mode.

1 Foran in-depth coveraye of how to modify the CTABLE . TEXT program, see the Special Configurations chapter of the Pascal 3.0 Workstation
System Manual.

External Graphics Displays and Plotters

If you have a printer which does not conform to the HP Raster Interface Standard, all is not lost.
It must, however, be capable of printing raster-image bit patterns. There are two main methods
by which printers output bit sequences. The first is: when a printer receives a series of bits, it
prints them in a one-pixel-high line across the screen. The paper then advances one pixel’s
distance, and the next line is printed. The other method (which lends itself to user-defined
characters more than graphics image dumping) takes a series of bits, breaks it up into 8-bit
chunks, and prints them as vertical bars 8 pixels high and one pixel wide. The next eight bits
compose the next 1 x 8-pixel bar, and so forth.

This latter method is that used by the HP82905 printer. The image (which is printed out
sideways) takes a GSTOREd image and breaks the 16-bit integers into two 8-bit bytes, and
sends them to the printer one row at a time. Writing your own routine to dump a graphics image
to a non-comforming printer should not be difficult, given the ability of taking the graphics
image and placing into your own data array (referred to in the last chapter).

Note that on a CRT, an ‘‘on’’ pixel is light on an otherwise dark background, and on a printer,
an “‘on’’ pixel is dark on an otherwise light background. Thus, the hard copy is a negative image
of that on the screen. To dump light images on a dark background, you can invert every bit in
the stored image. To invert the bits in a 32-bit integer, you can execute the following code
segment:

if N=minint then

Ni=maxint
else
Ni=z-N-13

The reason for the subtraction is that Series 200 computers use twos-complement representation of
integers. Also, you must consider MININT" as a special case because you cannot negate MININT in
an integer; +2 147 483 648 cannot be represented in a signed thirty-two bit twos-complement
number.

1 MININT and MAXINT are two standard constants in HP Pascal. MININT= —231= -2 147 483 648, and
MAXINT =231 -1= +2 147 483 647.

83

84 External Graphics Displays and Plotters

External Color Displays

The HP 98627A RGB interface allows you to connect a color monitor to your computer, whether
the computer’s internal CRT supports color or not. The HP 98627A does not, as mentioned before,
support color map operations; thus, you cannot change the color of an area on the screen without
redrawing the area. Nor can you define your own color-addition scheme as you can with a
color-mapped device (see the Color Graphics chapter). In addition to this, there are only eight pure
colors'; to get others, you must go to dithering.

There are many types of color monitors which you can connect to your computer through an HP
98627A color monitor interface. In the Cont roluo rd variable which is passed to the DISPLAY_INIT

procedure, you must specify accordingly:

Desired
Display Format

Description

Bits
10-8

Standard Graphics
512 by 390 pixels,
60 Hz, non-interlaced

512 by 390 pixels,
50 Hz, non-interlaced

TV Compatible Graphics
512 by 474 pixels,
60 Hz, interlaced
(30 Hz refresh rate)

512 by 512 pixels,
50 Hz, interlaced
(25 Hz refresh rate)

High-Resolution Graphics
512 by 512 pixels,
46.5 Hz, non-interlaced

HP Use Only

U.S. Standard

European Standard

U.S. Television

European Television

High Resolution

Internal

001 (256)

010 (612)

011 (768)

100 {1024)

101 {1280)

110 (1536)

Out of range values are treated as if ControlWord = 256, as is ControlWord = O (except Model

237, where 0 keeps the type-ahead buffer, and 256 removes it).

1 Only eight pure colors can be created on an external color monitor. This is because there is no control over the intensity of each color gun.
Each color can be either off or on, and there are three colors: red. green, and blue. Two states. three colors: 27 = 8.

External Graphics Displays and Plotters 85

External Plotter Control

There are many device-dependent operations you can do through calling the OUTPUT_ESC
procedure. See Appendix B for details on all the things you can do.

Controlling Pen Speed

To improve the quality of the lines drawn by a plotter pen, you may want to make them draw more
slowly. There are other factors, too, which can affect line quality. For example, humidity can alter
the line quality of a fiber-tipped pen. To accomplish this, you can call the OUTPUT_ESC procedure
with the appropriate parameters. Or, the following procedure will do it.

P S T ST T ST T TSRS SR S LS SRS S RS LA L2 A s AR LR L
procedure PenSpeed(Speed: inteder)s

i el >
{ This procedure selects a pen sepeed for ah HPGL plotter. ¥
e i >
const
SetPenSpeed= 20503 {a mnemonic is hetter than a madic numberl
var
Iarrav: arravy [1,.,2]1 of inteders’ { \ These are variables b
Rarrav: arrav [1.+11 of reals { » needed by the DGL ¥
Error: inteders { / pProcedure "output_esc" }
begin {procedure "PenSpeed"}
Iarrav[1l:=Spreed’ {use the Passed Parameterl}
ITarray[21:=03 {affect all rPens?t
output_esc(SetPenSpeed 2 0 IarravRarravError) ;i
if Error<>0 then {error?}

7

writeln(‘Error ‘s+Error:0,’ in procedure PenSpeed",’)3
ends {procedure "PenSreed"}

The first element of the integer array specifies the pen speed; the range and resolution of pen
speeds, and default maximum speed depend on the plotter. The second element of the array
specifies the pens to be affected. One through eight specifies pens one through eight, respectively.
Any value outside of this range is taken to mean, “‘Affect all pens.”

Selecting a pen speed specifies a maximum speed rather than an only speed, because on short line
segments, the pen does not have time to accelerate to the specified speed before the midpoint of
the line segment is reached and deceleration must begin.

This procedure also provides a skeleton for making other special-purpose routines. For most
operations dealing with OUTPUT_ESC, one need only change the name of the procedure and the
parameters being passed to the OUTPUT_ESC procedure.

86 External Graphics Displays and Plotters

Controlling Pen Acceleration

On the HP 7580, HP 7585 and HP 7586 drafting plotters, you can specify the amount of accelera-
tion the pen is to undergo when starting or ending a line. On any particular line, positive accelera-
tion (speeding up) will occur until one of two things happens:

® The midpoint of the line is reached, and negative acceleration (slowing down, or deceleration)
must begin, to ensure that the pen will reach a speed of zero precisely at the second endpoint
of the line it's drawing; or

® The specified maximum speed is reached. In this case, that speed will be maintained until the
pen is at a particular distance from the second endpoint of the line. At that distance, which
depends on the specified maximum speed and the specified acceleration, the pen will start to
smoothly decelerate such that it will reach zero velocity at the second endpoint.

The first element of the integer array passed to OUTPUT_ESC specifies the pen acceleration: it may
range from one through four gees'. The second specifies the pens to be affected. One through eight
specifies pens one through eight, respectively. Any value outside of this range is taken to mean,
“Affect all pens.”

Controlling Pen Force

On many drafting plotters (e.g.. HP 7580, HP 7585, HP 7586), you can specify the amount of
force pressing the pen tip to the drawing medium. This is useful when matching a pen type
(ball-point, fiber-tip, drafting pens, etc.) to a drawing medium (paper, vellum, mylar, etc.). Again, if
a pen is partially dried out, it may help line quality to adjust the pen force.

The PenSpeed procedure mentioned above can be modified slightly to control pen force. The
operation selector should be 2051. The first element of the integer array specifies the pen force; the
second specifies the pens to be affected. One through eight specifies pens one through eight,
respectively. Any value outside of this range is taken to mean, “‘Affect all pens.”

The force number is translated into a force in grams. If, for example, you have an HP7580A plotter,
the force number is converted to force as follows:

1 = 10 grams 5 = 42 grams
2 = 18 grams 6 = 50 grams
3 = 26 grams 7 = 58 grams
4 = 34 grams 8 = 66 grams

This is not by any means an exhaustive list of the things you can do with OUTPUT_ESC, but it
serves to acquaint you with the concept of using the procedure for controlling device-dependent
operations. A thorough understanding of its use can only be gotten by combining information from
the DGL Language Reference with actual hands-on experience.

1 One “‘gee.” or one [earth] “gravity,” is the acceleration due to gravity at sea level. lts value is approximately 9.8 m/sec” or 32 ft'sec®.

Chapter

4

Interactive Graphics

Introduction

It has already been pointed out that graphics is a very powerful tool for communication. The high
speed available from Series 200 computers makes possible a powerful mechanism for communicat-
ing with the computer: Interactive Graphics.

The best way to understand interactive graphics is to see it in action. Compile and execute the
program ‘“‘BAR_KNOB”, from your “DGLPRG:” disc. If you turn the knob clockwise, the bar
graph displayed on the screen will indicate a larger value. At the same time, the numeric readout
underneath the bar will increase it's value. Turning the knob counterclockwise has the opposite
effect. (If your computer has no knob, the arrow keys or mouse will work, but may not feel as
“natural.”’) This is an effective demonstration of all the key characteristics of an interactive graphics
system. They are:

® A data structure. (The value displayed underneath the bar is the contents of a variable that we
are modifying. The internal variable containing the value is a degenerate case of a data
structure.)

® A graphic display that represents the contents of the data structure. (The bar graph and the
numeric display represent the value of the internal variable.)

e An input mechanism for interacting with the displayed image (the knob, in this case.)

This is the minimum set of requirements for an interactive graphics system. A key feature of
interactive graphics is that it is a closed loop system. This means that the operator can immediately
see the effect of his action on the system, and thus base his next action not only on the state of the
system, but also on the effect his last action had on the system. A few points are worth noting about
this system:

e The knob is used because it is functionally appropriate. While we could have entered numeric
values to control the bar graph, the knob “‘feels’ right. We are used to using knobs to control
metered readouts.

e Control of the value with the knob is fairly intuitive. The normal range markings make it readily
apparent when the value is in range. Little explanation is needed, due to the immediate
feedback from the displayed image.

® A system is ‘“‘modeled.” The user’s input has a well defined relation to the output of the
system.

Thus, interactive graphics can be as simple as representing a single value on the screen and
providing the user a method for interacting with it. It can also be as complex as a Printed Circuit
layout system. This chapter will not tell you how to build a Printed Circuit layout system, but it will
provide some hints on implementing interactive graphics systems that work.

87

88

Interactive Graphics

Characterizing Graphic Interactivity

One of the most important things in designing a good interactive graphics system is characterizing
the interaction with the system correctly. Properly characterizing the interactivity allows selection of
the most appropriate device for interaction with the system. Three things have to be considered in
characterizing the interaction:

® The number of degrees of freedom in the system. This is the number of ways in which a system
can be changed.

® The quality of each of the degrees of freedom. This describes how the input to a degree of
freedom can be changed.

® The separability of the degrees of freedom.

Once again, the best way to understand the characterization of interaction is to see an example in
action. Compile and execute “BAR_KNOB2” from your “DGLPRG:” disc. This program is very
similar to “BAR_KNOB?”, but it has several bars, instead of one. This introduces another degree of
freedom to the model. The original program had a single degree of freedom, the value indicated by
the bar graph. The quality of this degree of freedom is continuous. The new program has the same
continuous input (which is still handled by the knob) but has added a second degree of freedom,
the selection of the bar graph you want to modify. This degree of freedom is quantizable, and is
handled by the numeric keys. (Softkeys would be even better, but require digging into the operat-
ing system.) The degrees of freedom are also separable, since you don’t need to interact with both
of them at once.

The degrees of freedom are not separable in freehand drawing -you want to change X and Y
simultaneously. They are only partially separable in laying out images on a screen - you can get by
with moving along one axis at a time, but it’s easier if you can interact with both of them at once.

Interactive Graphics 89

Selecting Input Devices

The purpose of the discussion on characterization of graphic interaction was to lay the ground-
work for discussing when various input devices are appropriate. There are several available to
the Series 200 computers, and choosing the correct one is critical to the design of a highly
productive human interface for an interactive graphics program.

Single Degree of Freedom

Many interactive graphics programs need deal only with a single degree of freedom. The
appropriate control device for such programs depends on whether continuous control or quan-
tized control is needed.

The program “BAR_KNOB” is a good example of a single degree of freedom that is continuous.
The knob is ideal for controlling a program like this. If “‘fine tuning” is needed, the shift key can be
used as a multiplier to change the interpretation of the knob. The knob is read through the
KEYBOARD file. The knob generates forward and back spaces for clockwise and counterclockwise
motion, or line-feeds and up-spaces if the shift key is held down while the knob is turned. The
following program (“BAR_KNOB” from the “DGLPRG:” disc) shows how to interpret the knob for
a continuous, single degree of freedom, as well as how to update the display to show the results of
the interaction.

$ucsd debuds
prodram Test (Kevboardsoutrut)s
import d9l_varssddl_tvressyddl_libsdgl_inai

tvre
States= (OnsOFFf) 3
DrawMode= (DrawsErase+CompsNonDom) 3

const
FS= chr(28)3
BS= chr(8)1
Us= chr(31)3
LF= chr(10)3
CR= chr(13)3
Q= Qs
Q1= ‘93
Underline= chr(132)1
Ind_off= chr(128)1
Inv._0On= chr(129)3
MinBarY= 03
MaxBarY= 1003
MinBarK= 1803
MaxBarK= 2203
IncDeltas Q.14

var
Error_num: inteders
I+TempInt: intederi
LevelsLastlevel: reals
Delta: reali
CharWidth:CharHeight: reals
Character: chars
Done: booleans
Kevboard: texti

TempString: Gstring2553

90

Interactive Graphics

tpadet {***-l-**}
procedure GrarhicsDisrlav(State:States {On/0ff})3
canst
GrarhicsDisp= 103503
yar
Error:inteders
SwitchArrav:intederi
Dummysreals
bedin {procedure GrarhicsDisplav?}
case State of
On:SwitchArravi=1i
Off:SwitchArray:=043
ends {case State of}
outrut_esc(GrarhicsDisp 10)SwitchArray sDummy +Errar) 3

if Error <3 O then
writeln (‘Error ‘+Error:ls+’ encountered in GrarhicsDisplav ')
ends {procedure GrarhicsDisplav?}

FPaged [EEEAEERERFRRFRRERR IR R R R RN R FRRRRE RN RRRE R AR RN RE R R R R R R AR R RRF AR NRNR)
procedure AlrphaDisplav(State:States {On/0ff})3
const
AlrhaDisp=10311
var
Errorzinteder:
SwitchArrav:inteders
Dummy:sreals
bedin {procedure AlrhaDisplav}
case State of
On:SwitchArray:i=11
Off:SwitchArravi=03
endy {case State of?}
putrput_esc(AlrhaDisp+1+0y8witchArray »DummysError) 3

if Error <3 0O then
writeln (‘Error “+Error:iy’ encountered in Alphalisplay ')}

ends {procedure AlrhaDiselav}

SPaget {ENFEEERRFRFERIE R RN R R AR R R R R R R AR ERRERRRRRFRRF RN RER R R AR AR HRARNR]

bedin {Main Prodram}

lLeveli=03 {current heidht of barl

LastlLevel:=Levels {previous height of bar}

drarhics_inits {initialize the drarhics svstem}

displav_init (30 Error.Num)i {which output device?}

if Error_Num=0 then bedin {output device initialization OK7}
AlephaDisplav (Off) 3 {turn off alepha displav}
GrarhicsDisplay(On)i {turn on drarhics disrlav}
set_aspect{D11+389)1 {use whole screen’}
set_window(0,400,-30,120)3 {scale the window for the datal
set.color(l)} {color number 1: white?
CharWidth:=(0,033%400)3 {char width: 3.5% of screen width?}
CharHeidght:=(0,05%150)3 {char height: 3% of screen heidht?}
set_char.size(CharWidth, CharHeight)3i {install character sizel}
{-ew- Qutline the Bar -—--cemmmo s mmm e e e e e e e }

move(MinBarX-0,5MinBar¥Y-0.5)1 {move to lower left corvner.,.,?}
line(MinBarX-0.,5MaxBarY+0,5)1 {+ivdraw to upper left corner...?}
line(MaxBarX+0.5)MaxBarY+0.,5)1 {viodraw to upper right corner...’
line(MaxBarX+0,3yMinBar¥-0.5)3 {.,vdraw to lower left corver...}
line(MinBarX-0,5MinBaryY-0,5)1 {+v+vand draw to lower left corner.?}
{---- Label the bar (rumeric labels) -----ommommmmor e ¥

Interactive Graphics

for I:=0 to 10 do bedin
strurite(TempStringdslsTempInt s I%1023y7-7)%
move (179-strlen(TempString)*Charlidth yI*10-0,24%CharHeight)?
dgtext (TempString)s
endi {for I:=1 to 10 }
{---- Label the bar (textual
move (221, BO-CharHeidght/2)1
dtext ('-Hidh Normal’)s
move (221 BO-CharHeight/2)3
dtext (‘-Low Normal’)3j
{---- How about some instructions
CharWidthe=(0,02%400)3 {char width: 2% of screen width}
CharHeidght:=(0,035%150) 3 {char height: 3.57% of screen height}
set_char_size(CharWidthy CharHeight)$ {install character size}
moue (04 3)3
TempStrings='Use the Knob
dgtext (TempString)i
TempStrind:='Adjust the value, +CR+LF}

labels)

to’+CR+LF 3.

dtext (TempString)i
TempStrings=' '+CR+LF3
dtext (TempString)i
TempString:='SHIFT with the Knob
dtext (TempString)i
TempStrind:='sreeds
dgtext (TempString)s
TempString:=‘"3}
{---- Set a go0o0d character size
CharWidth:=(0,035%400)3
CharHeidht:=(0,053%150)}
set_char_size(CharWidthy CharHeight)i
rereat

read(Kevboard:Character)s

Deltai=01

case Character of

it up, ‘+CR+LFS

FS: Delta:=IncDeltai

BS: Delta:=-IncDeltas

LF: Deltas=10%IncDeltas

us: Deltas=-10*IncDeltal

Q+Q1: Done:=TRUE
otherwise

endi {case ord(Character)?}
if Delta»0 then bedin
set_color(l)}
while (Level<lLastlLevel+Delta)
lLevel:=Level+IncDeltas
move(MinBarXsLevel)s
line(MaxBarXiLevel)s
end {while (Level<lLastlLevel) and
end {if (Deltax0) and {(Level<100)
else bedin
if (Delta<0) and
set.color(0)s
repeat
move (MinBarX, Level)i
line(MaxBarX, Level)i
Level:=Level-IncDeltas
until (Level<=LastLevel+Delta)
endy {if
erds

and

(Level»=0,3%IncDelta)

"+CR+LF 3

{char width: 3.9% of screen width}
{char height: 5% of screen heidht?
{install character size)

{det character without echo to screen}
{start by assuming no motionk

{what‘s the character?}

{right arrow?}

{left arrow {(backspace)?}

{down arrow?}

{ur arrow?}

{or Quit?}

{if none of the above, idnore it}
{CGoing Up}

{we want to draw lines?}
(Level<MaxBar¥-IncDelta) do bedin
{new tor of bar}

{move to left edde.,, 1}

{+vvand draw to right edgel}
(Level«<MaxBar¥)}

{Going Down}
then bedin
{we want to erase lines?}

{move top the left eddge..,.}
{yesand draw to the right edgel}
{new torp of bar}

or (Level<=MinBary)
(Delta<0) and (Level:0)}

91

92

Interactive Graphics

{---- How about some NUMBE IS T —cmmcm e e e o +

set_color(0)s {we want to erase lines}?

strwrite(TempStringsl+TempIntLastlevel:Sel)s {convert level to chars?}

move{MinBar¥+(MaxBarX-MinBarX)/Z2-strlen(TempString)*CharWidth/ 2,
MinBarY-Z#CharHeidght)

gtext{TempString) 3 {erase the old rumber?

set_color(l)s {we want to erase lines?}

strwrite(TempStringslsTempInt Level:B:1)3

move (MinBarX+(MaxBarX-MinBarX)/2-strlen(TempString)*CharWidth/2,
MinBarY-2%CharHeidght) 3

gtext(TempString)s {write the new?’
LastlLevel:=Levels {remember the old number?}
until Dovnes {repeat until user hits [Q1}
GrarhicsDisplay (Off)3 {turn off drarhics displav?
AlrhaDisrlay (On)3 {turn on alrha displav}
displav_.terms {clean up loose endst
endi
drarhics_terms {terminate the drarhics racKadel
end. {main prodram}

Keys can be used for quantizable control of a degree of freedom. It is also possible to use keyboard
entry of numeric values for quantizable information.

Non-separable Degrees of Freedom

One characteristic of multiple, non-separable degrees of freedom is that they are generally con-
tinuous. The most common operation of this type is free-hand drawing. This is most easily accom-
plished with the 9111A graphics tablet.

Separable Degrees Of Freedom

In many programs, the degrees of freedom are completely separable. In fact, for some operations, it
is definitely preferable to have totally independent control of the degrees of freedom of the model.

All Continuous

If all the degrees of freedom in a model are continuous, then the selection of the degree of freedom
to operate on becomes another degree of freedom, and is quantizable. A good choice is using the
keyboard to select the degree of freedom and then using the knob to control the input to that
degree of freedom. This is not as effective as a bank of knobs, but adding a bank of knobs means
adding hardware (a voltmeter, power supplies, and potentiometers). The program “BAR_
KNOB2”, on the “DGLPRG:” disc is an example of this type of interaction. Single keystrokes are
used to select the degree of freedom you are operating on, and then the knob is used to vary the
value along that degree of freedom. The following key interpretation loop is used in “BAR_
KNOB2” to allow the user to select the bar to be controlled, as well as controlling the value of the
selected knob.

Interactive Graphics 93

READ (KEYBOARDCharacter)s

Delta := 03

CASE Character OF
FS : Delta := IncDeltas
BS » Delta :=-IncDeltas
LF : Delta := 10#IncDeltas
us : Delta :=-10%IncDeltas
G,01 : Daone = TRUE}

‘1.3’ BEGIN
ClearInd(Bar)i
Bar := ORD (Character)- ORDC'Q’) 3
SetInd(Bar)s
END 3
OTHERWISE
END§3 {CASE Character}’

All Quantizable
If all the degrees are quantizable, using the keyboard (or using softkeys if you have requisite system
design experience to use them) is appropriate.

Mixed Modes

In most sophisticated graphics systems, several degrees of freedom in the system interact with each
other. A good example is a graphics editor. In a graphics editor, your primary interaction is with a
visual image, and the degrees of freedom (X and Y location) for that operation are partially
separable, at best. (They are non-separable if it supports freehand drawing.) There is also a degree
of freedom involved in controlling the program. The program control is strongly separable from the
image creation operation.

The most appropriate device for supporting mixed modes is the HP 9111A Graphics Tablet. The
tablet supports two modes of interaction by partitioning the digitizing surface into two areas. Sixteen
small squares along the top of the tablet can be used as softkeys to provide a control menu. The
large, framed area underneath the softkeys is the active digitizing area. The active digitizing area is
used for interacting with the image you are creating. Other menu/ image area combinations are also
possible.

It is possible to combine the quantized, separable control operations with continuous, non-
separable image editing. This is done by using the active digitizing area for interacting with the
image and using the menu area for controlling the operations available in the editing program. The
operator does not have to change control devices to access the different interaction modes.

9

Interactive Graphics

Echoes

An important part of interactive graphics is letting the operator know “‘where he is at.”” This can be
done by updating the image. In other operations, such as menu selection, object positioning, and
freehand drawing, it is important to show the operator where he is. In many cases, this can be done
with AWAIT_LOCATOR.

The Built In Echo

Many graphics applications can be handled using the built-in echo. AWAIT_LOCATOR allows you
to access one of the built-in echoes for digitizing. The following program interprets a menu to select
one of the built-in echoes, and then draws an appropriate image on the CRT after the call to
AWAIT_LOCATOR completes. It is on your DGLPRG: disc, in the file called “LOCATOR.” If you
have an HP 9111 Graphics Tablet, changing the constant LocatorAddress from 2 to 706 will allow
you to use the tablet for a locator instead of the knob or mouse.

$debud$
prodram Test(output)s
import ddl_varssddgl_tvpres,dgl_libsdgl_polvsddl_inai

tyre
Commands= 04089 {nine commands totall}
RealArravy= array [1,+3] of reals
const
F§5= chr(28)3 {right arrow}
BS= chr(B)i {left arrow or bacKsprpace}
us= chr(31)3 {ur arrow?
LF= chr(10)3 {down arrow?
CR= chr(13)3 {carriade return’
MinK= 03 {minimum X value for screen’
MinY= 04 {minimum ¥ valuwe for screen?
Maxi= 5114 {maximum X value for screen’
MaxY= 3893 {maximum Y value for screen’
Krande= MaxH-MinKi {total randge of X
Yranges= MaxY-MinY3 {total range of Y
LocatorAddress= 24 {2 for Knob 706 for 91111}
var
Error_num: inteders {error return variable?l
I+TempInt: inteders {utility variables?}
ButtonWalues: inteders {which button selected?}
Kins¥ins reals {location of digitized Point?}
Klasts¥last: reali {last diditized Point}
CharWidth:CharHeight: real: {char size in world coords?
Done: booleani {are we supposed to quit?}
NewLine: booleans {start new line}
TempString: Gstring2553 {utility variable?}
EchoSelectEchoSelector: 093 {menu selectionl}
MenuTaopr: reals
CellWidth: reals {width of menu spaces}?
Commarnd: Commands 3 {which command selected?}

FPaded {EFEFEFRENERFRERRE AR RN R RN RN R AR ERARE AR R R R FERRAR AR RN RN RN NN]
procedure DrawMenus

uar
I: inteders {loop-control variablel
Ylabel: reals {Y position of entree labell}

Yarray: RealArravi

Interactive Graphics

L T e e R PR }
procedure MenuCell(I:inteder)3
var
TempPitch: reals {temporary variable}
Xlahel: reals {X Position of entree labell}
Harrav: RealArravi X positions of entree celll}
bedin {procedure MenuCell}
case I of

0: bedin

TempString:='STOP '} {label text}
Karrav[1J1:i=01 {\ ¥
Rarrav[21i=2#CellWidth} { A\ }
Xarray[31:=2#CellWidths { * X positions for box }
Harrar[41:=01 { 7/ }
Karravr[91:=014 {7/ }
Hlabel:=MinX+CellWidth-strlien(TempString)*CharWidth/23
ends
1+410: bedin
TempPitchi=CellWidth*I} {temporary shorthand variable?}
Karrav[11:=CellWidth+TemprPitchi {\ }
Harray[21i=2#CellWidth+TempPitchs { \ }
Karrav[3l:=2#CellWidth+TemprPitchi { » X positions for box ¥
Karrav[4):=CellWidth+TempPitchi { 7 ¥
Harray[Sl:=CellWidth+TempPitchi {7/ ¥
TempStrings=’ '3 {label text}
if I<=8 then strwrite(TempStrind sl sTempInt Isl)i
Klabels=Xarrav[11+CellWidth/2+strlen(TempString)*CharWidth/23
end
endi {case I of}
polvline(S,Xarravs¥Yarray)s {draw perimeter of cell?
move(Alabel¥1label)s {move to the right placel}
gtext{(TempString) s {label the text}
endi {procedure MenuCell}
L e b
bedin {procedure DrawMenul
Yarray[1l:i=MinY} {\ }
Yarrav[21:=MinY}3 { A\ }
Yarrav[31:=MenuTori { *» Y values for box ¥
Yarrav[4l:=MenuTori { / ¥
Yarrav[Sl:i=MinY3 {7/ }
Ylabel:=MinY¥+(MenuTor-MinY)/2-CharHeight/2} {Y position of label}
for I:=0 to 10 do MenuCell(I): {do all the entree cells}

endi {procedure DrawMenul}
$Pagded (XA RERERERRRARA AR R IR RN R R R AR R AR RN E R AR AR AR AR RN RN R R ERRRERRRRRR D
function ChecKkMenu(Xin:real):Commandss
bedin {function CheckMenul
if Xin<Z#CellWidth then CheckMenus:=0 {X outside of menu?}
else bedin
TempInti=trunc((Xin-CellWidth)/CellWidth); {which sell chosen?}
if TempInt>8 then ChecKkMenu:=Command
else CheckMenu:=TempInt
end}
end {function CheckMenu ¥

95

96

Interactive Graphics

tpades {REEEFERRER R R EE R RR AR RERF R R FRRRRRRRRRFRRR R R RN R AR R R AR R R R R AR)

bedin
graphics_init}
diseplav_.init(30sError_Num)j
if Error_Num: >0 then bedin
writeln('l failed to initialize the
writeln(‘Error number “sError_Num:Z,
end {if Error_Num<>0)
else bedin

{Main prodram’

{initialize the drarhics system?}
{which output device?}

{output devic initialization OK7}

display.’}}

was returned,’);

LOCATOR_init{(LocatorAddressError_Num)3

if Error_Num<:0 then bedin

writeln(’'I failed to initialize the locator.’):
writeln('Error number “+Error_Num:Z2,’ was returned, ')}

end {if Error_Num< >0}

elese bedin
set_aspect(311,388)3
set_window(0,311,0.388)3
CharWidth:=0,035%3111
CharHeidght:=0,05%3893

{No errors so farl}

{use whole screen’

{scale window for data}

{char width: 3.5% of screen width?}
{char height: 37 of screen heidht}

set_char.size{(CharWidth,CharHeight)i{install character size?

MenuTorps=Yrande/133
CellWidth:i=Xrande/123
DrawMenus
NewlLines=trues
EchoSelect:=43
Command:=43
Done:=falses
rereat
if NewlLine then
EchoSelector:=2
else
EchoSelector:=EchoSelects

{menu is 1/13 the total screen heidht}
{each entree cell 1/12 screen width}
{draw the menul

{vesy we are startingd a new linel
{start program with default command?
{ditto}

{nos we’'re not done vetl

{startind a new line?}

await_locator{EchnSelector ButtonValue »Xins¥in)j

if Yin<MenuTor then bedin
NewLines=trues
Command:=CheckMenu(Xin)3
case Command of
O: Done:r=trues
EchoSelect:=1
EchoSelect:=2
EchoSelect:=3
EchoSelect:=4d
EchoSelect:=3
EchoSelect:=
EchoSelect:
EchoSelect:=
end {case}
end {1f}
else bedin
if NewlLine then hbedin
NewlLine:=falsel
set_echo_pos(Xin¥in)3
move {Xins¥in)s
¥Ylast:=Yini
Wlasti=Xini
end

L1 I e % i % ISl

.
¥
.
k]
*
¥
"
1
.
1
"
1
"
1
.
kl

G
7
8

W~ @

{user choose menu ortion™}

{start a new line next timel
{determine menu selectionl

{which command?

{vesy we're done with the pProdgraml}

{\ ¥
{ A\ +
{ \ }
{ \ Select the aprrorriate 1}
{ / EchoSelector. ¥
{ / }
{ / }
{7/ }
{not a menu selection}

{start a new line?

{now we’'re in the middle of a linel
{move the grarhics cursor?

{cause line-drawing to start there}l
{remember the last X.+s2}

{vivand the last Y}

Interactive Graphics

else bedin
set_echo_pPos{Xins¥in)s {move the drarhics cursor’
if (¥in=Xlast) and (Yin=Ylast) then NewlLine:=true
else bedin
case EchoSelect of
1472 line(HinsYin)i {draw a line?}
B: bedin
line(Xlasts¥in)3
line(XinsYin)i
line{(Xins¥last)s
line(Xlasts¥last)s
NewLine:=truei

end
otherwise
endi {case EchoSelect of?}
Hlasti=Xini {remember the last X...}
Ylaste=Yins {+veand the last Y3}
end
end
end;
until Dones {are we done vet?}
locator_terms {terminate the locator}
displav_terms {terminate the displav}
end’ {Error trar}
endi
grarhics.terms’ {terminate the drarhics svstem}
end., {Main prodram}
Rubber Echoes

If you have run the progam “LOCATOR,”’ you will have seen that several of the echoes are rubber
band echoes, in other words, they create lines that seem to stretch between various points on the
screen. Echoes 4 through 8 require two points to define them. One of these points is the point being
tracked with the AWAIT_LOCATOR statement. The other is the anchor point, and is set using the
SET_ECHO statement. After using one of the rubber band echoes, and drawing the figure it
represents, it is necessary to get a new point to anchor the next echo to. This is done in the program
“LOCATOR” by the following block of code:

IF NewlLine THEN BEGIN
Newline := FALSE}S
SET_ECHO_POS (XinsYin)i
MOVE (Xins¥Yin)i
Ylasti= Yinj
Klasti= Xini

END

97

98

Interactive Graphics

ELSE BEGIN
SET_ECHO_POS (Xins¥in)i
IF (Xin = Xlast) AND (Yin = Ylast) THEN
NewlLine := TRUE
ELSE BEGIN
CASE EchoSelect OF
1072 LINE (Xins¥in) 3

8 : BEGIN
LINE (Xlasts Yin)i
LINE (Xin» Yin)s
LINE (Xins Ylast):
LINE (Hlasty Ylast)s
NewlLine := TRUE}
END .

OTHERWISE

END3 {CASE EchoSelect of?}

Klast 1= Xinsi

Ylast 1= Yins

END

END 3

In the preceding code, the anchor is set to the last digitized point, unless the same point was
digitized twice, in which case the small croshair cursor can be used to select a new anchor point.
Once a new anchor point is selected, the rubber band cursor mode is returned to.

When the knob is being used as a locator, it is also possible to use SET_ECHO to establish the
initial position of the locator when AWAIT_LOCATOR is called.

Tablets and Aspect Ratios

If the knob is used as a locator for the CRT, the mapping between the locator device and the display
device is isotropic, since the two devices use the same display mechanism. This is not true if an
external digitizing device (such as the HP 9111A Graphics Tablet) is used. The default aspect ratio
for the 9111A is 0.7234, while the CRT of the Model 236 =0.7613 (as set up in “LOCATOR,”
above). This means that a square area on the graphics tablet does not represent a square area on
the CRT. This is not a tremendous problem in many interactive graphics programs, where the tablet
is merely used to point at objects. However, in some applications, those in which the tablet is used
to copy an existing document into the computer, the distortion is not acceptable. This is easly
remedied, through the SET_LOCATOR_LIM procedure. The following addition to the “LOCA-
TOR” program will set the tablet to the same aspect ratio as the CRT, insuring the desired
isomorphic transformation.

ELSE BEGIN {No errors so far}
SET_ASPECT (511,389)}
IF LocatorAddress = 706 THEN BEGIN{This is a tablet?}
SET_LOCATOR_LIM(O,(311/389)%217.6+0,217+6+Error_num)
IF Error_num <3 O THEN
WRITELN (Error_num:2s+’ encountered in SET_LOCATOR_LIM.’);
END3 {IF LocatorAddress = 706}
SET_WINDOW (0+3114+0,389)3

Chapter

5

Color Graphics

Color !
Color can be used for emphasis, for clarity, and just to present visually pleasing images. Color is a

very powerful tool, and it follows directly that it is Very easy to misuse. Be careful in using color, and
it will serve as a valuable tool for communication. Misuse it, and it will garble the communication.

The DGL Color System

In order to create a device independent programming language, it is necessary to model an ideal
system, and then create transformations to map that system onto real hardware. This is the way the
Device independent Graphics Library (DGL) works. Understanding the ideal color system will
make it much easier to understand the actual implementations that are available on Series 200
computers. ‘

In order to understand the color system, it is necessary to understand two concepts:

e Color as an Attribute
® Models for Color Specification

After covering these topics, we will also go into the concept of a color space, which is another way
of describing the color models that are used in DGL.

Color As An Attribute

We have already dealt with the attribute of linestyle, and the attributes which describe the fill pattern
in a polygon. Color is another primitive attribute. Two procedures in DGL allow you to specify the
attribute of color:

e SET_COLOR selects the color used by GTEXT, LINE, INT_LINE, POLYLINE and INT_
POLYLINE, as well as the edges generated by POLYGON, POLYGON_DD, INT_POLYGON
and INT_POLYGON_DD.

o SET_PGN_COLOR selects the color used for the interior of polygons generated by POLY-
GON, POLYGON_DD, INT_POLYGON and INT_POLYGON_DD.

Notice that SET_COLOR and SET_PGN_COLOR both select a color attribute. The selection is
made from the color table.

99

100 Color Graphics

The Color Table

The color table is a repository of color definitions to be used for displaying primitives. It is used
to describe both lines and filled areas. The color table is a list of 32 colors, providing 32 colors
for the color attribute of graphics primitives.

Default Colors

When DGL is initialized for a color display (the 98627A or the Model 236 Color Computer), the
color table is set up with the following values:

Default Color Table Values

Value Color

0 Black
1 White
2 Red
3 Yellow
4 Green
5 Cyan
6 Blue
7 Magenta
8 Black
9 Olive Green
10 Aqua
11 Royal Blue
12 Maroon
13 Brick Red
14 Orange
15 Brown

16 thru 31 White

The Primary Colors
The lower eight pens are the colors of the default color map; the colors that can be created by

turning the guns of a color CRT on or off, in various combinations :
e Black and White (the extremes of no-color)
® Red, Green. and Blue (the additive primaries)

® Cyan, Magenta, and Yellow (the complements of the additive primaries - which happen to
be the subtractive primaries)

The Business Colors
The upper 8 colors (8 through 15) were selected by a graphic designer to produce graphs and
charts for business applications. The colors are:

® Maroon, Brick Red, Orange, and Brown (warm colors)
® Black, Olive Green, Aqua, Royal Blue (cool colors)

These colors are one designer’s idea of appropriate colors for business charts and graphs. They
were chosen to avoid clashing with each other. A technique for using them is described under
“Color Hard Copy’’ in the “Color Spaces’” section at the end of this chapter.

Color Graphics 101

Monochromatic Defaults
If a monochromatic display device is being used, the color table defaults to a set of dithered
gray patterns:

Default Monochromatic Color

Table Values
Value Luminosity
0 0.0000
1 1.0000
2 0.9375
3 0.8750
4 0.8125
5 0.7500
6 0.6875
7 0.6250
8 0.5625
9 0.5000
10 0.4375
11 0.3750
12 0.3125
13 0.2500
14 0.1875
15 0.1250
16 0.0625
17 thru 31 1.0000

If You Don’t Like the Defaults

The contents of an entry in the color table can be modified with the procedure
SET_COLOR_TABLE. The actual effect of a call to SET_COLOR_TABLE depends on the
color model being used. The color model is selected using SET_COLOR_MODEL. Which

brings us to color specification.

102 Color Graphics

Models For Color Specification

As mentioned above. SET_COLOR_TABLE is used to control the actual value of entries in the
color table. It was also pointed out that the effect of SET_COLOR _TABLE is determined by the
current color model. which is controlled by SET_COLOR_MODEL. It follows that it is neces-
sary to understand SET COLOR_MODEL before it is possible to understand
SET COLOR_TABLE.

SET_COLOR_MODEL selects (if you haven't already guessed) the color model to be used.
There are two models available in DGL: the RGB (Red. Green. Blue) and the HSL (Hue.
Saturation. Luminosity) models. We will discuss them in order of ascending complexity.

The RGB Model (Red, Green, Blue)

The RGB model can be thought of as mixing the output of three light sources (one each of Red,
Green, and Blue). The parameters in the model specify the intensity of each of the light sources.
The RGB model is selected by using a model selector of 1:

SET_COLOR_MODEL (1}3

Once the RGB color model has been selected. the parameters sent to SET_COLOR_TABLE
represent the percentage of full intensity of the red. green. and blue light sources:

SET_COLOR_TABLE (TableEwtrys Red: Greens Blue:d:

The following picture illustrates a physical model for the RGB system.

Greéﬁ Source

RGB Color Model

Color Graphics

Whenever the red, green, and blue parameters have the same value, the resulting color is a
gray tone (i.e. it has no hue component). The RGB model is based on the additive primaries,
the colors used for describing mixing light, as opposed to mixing pigments, which are subtrac-
tive. It is a good system for interacting with color CRT displays, since it requires little conversion
to translate it to a set of signals suitable for driving a color CRT.

The HSL Model (Hue, Saturation, Luminosity)

The HSL model is closer to the intuitive model of color used by artists, and is very effective for
interactive color selection. It is similar in concept to the methods used by artists for mixing
paints, where pure hues are selected, and then white and black are mixed to dilute the color
and/or darken it. The three parameters represent hue (the pure color to be worked with),
saturation (the ratio of the pure color mixed with white), and luminosity (the brightness-per-unit
area.) To better understand the parameters, let’s build a model for the HSL system.

If we start with a white light source we should be able to get any color we want by filtering it. (A
perfect white light source contains equal parts of all possible colors.)

The first step is to select the Hue to work with. This can be done with a color filter. In fact, if we
take several color filters, and arrange them to form a disk, we could rotate the disk in front of the
white light source and choose any of the colors on the filter wheel. Since the model we are
working with is a model for understanding rather than one that we actually have to build, we
can consider the wheel to consist of an arbitrarily large set of color filters, so that any rotational
movement of the wheel will select a different color filter. Now we will provide a mechanism to
drive the wheel which will position it angularly, based on a number we send to it, a number
between 0 and 1 (inclusive). We will arrange the filters as a conventional color wheel (there are
advantages to this, which are discussed under *‘Effective Use of Color.” later in this chapter).
Since it is a wheel, it must meet itself somewhere, and Red is as good a place as any, so two
parametric values (0 and 1) describe red. Such a color wheel would look something like this:

A Color Wheel for the HSL Model

103

104 Color Graphics

This arrangement is fine for producing highly saturated colors (bright, pure, intense colors). but
there are other types of colors. and we need to be able to produce them. For a start, we can mix
some white light (remember our white light source?) with the filtered light. to desaturate the
color. Combining the filtered and unfiltered lights directly would produce 50% saturation, and
would double the luminosity of the resultant color. We want to have variable control of the
saturation, and. to keep the model simple. it would be better if the result of the saturation
control produced a unit luminosity. If. instead of mixing the two light beams directly, we mix the
outputs of two simple optical gates that are linked with a mechanical slider to control the
proportions of the colored and filtered light, we can control of the saturation while maintaining
a constant luminosity (intensity-per-unit-area). Once again, we will provide a mechanism which
takes a number between 0 (no color - pure white) and 1 (fully saturated color) and positions the
slider appropriately. The two pictures below show the model we have described, with a fully
saturated red in the first one, and a 50% saturated red in the second one.

Fully Saturated Red

Color Graphics 105

50% Saturated Red

Finally, we may wish to change the luminosity, or brightness of a color (for example, brown is a
dark red). This can be accomplished by putting an iris (like the one found on a 35 mm camera)
after the mixer that combines the output from the saturation slider. The same O through 1
numerical control interface is used to control the iris, and thus the luminosity. The following
three pictures show some combinations of the various controls:

Fully Saturated, Fully Luminous red.

106 Color Graphics

1. o
[Swturation —
; 2.8—

Saturation—
Slidar

R
{ Hhite
) [Light
™ Saurce

50% Saturated, 50% Luminous Red.

Color Graphics

To recap, the Hue parameter rotates a color wheel to select a ““pure” color to use. This color is then
mixed with white light. The ratio of the pure colored light to the white light is controlled by the
Saturation slider. Finally, the output passes through the luminosity iris (think of it as a hole you can
adjust the size of) that controls the brightness of the output.

The HSL model is specified by a model selector of 2 in the SET_COLOR_MODEL statement:
SET.COLOR.MODEL (2)3

A program called “COLOR” on the “DGLPRG:”’ disc uses the HSL model for interactive color
selection. (““COLOR” only works correctly on a Model 236 Color Computer.) It produces two
arrays for use with the SET_COLOR_TABLE statement, one for INTENSITY and one for
COLOR. The program is over 300 lines long, almost all of which is simply a human interface to
the following code in the update routine:

SET.COLOR.TABLE (TableEwntry:
HueVallTableEntryl,
SatWallTableEntry 1,
LumVallTableEntry1)s

Which Model?

Two models are provided by the DGL color system. If you are working with primaries only, or want
gray scale output, the RGB model is great. If, on the other hand, you are trying to deal with pastels
and shades, you are better off with a color model that is intuitive in nature, and that is where the
HSL model shines.

It is possible to get the best of both worlds by using the HSL model for the human interaction, then
reading the color table to get the RGB color values.

The “COLOR” program mentioned above does exactly that to calculate the correct cursor and text
color to use when the user changes the background color. This is done by reading in the RGB color
table values, calculating which corner of the color cube is farthest from the background color,
setting the foreground pen and text displays to that color, and then writing the RGB values back
into the color map. Even though the primary interaction is with the HSL model, the RGB model is
used because it is more convenient to find distances between colors in it.

tyPe
Colors= {(RedsYellowsGreensCransBlue MadentasWhitesBlack)s
Modes= (HuesSatsLumsTablesCoryl+CopPy2)i
EntrvyRandes= -1+4161%
FunnyArrays= array [Colors] of chari {array for alrha color}
const
FunnyChar= FunnvArraylchr(139)schr(137), {\ Arrar for }

chr(136)schr(140) { \ holding the 1}
chr(1d42) s chr(143) { / alrha-color }
chr(1d1),chr{(138)1% {/ controllers }

107

108 Color Graphics

var
TableEntry: EntrvRande s
RedBack GreenBackBlueBack: reals
LatelColor: char}
BackSum,0ldBackSum: 0ve73%

if TableEntry=0 then bedin {Backdround color}

set_color_model (1)} {RGB}
ina_color-table(ORedBack GreenBack BlueBack) {det RGB values}
BackSum:=0Q3 { N Calculate the ¥
if RedBack<0.,5 then BackSum:=43 { \ backdround color ¥
if GreenBack<0,5 then BackSum:=BackSum+2% { / in order to make ¥
if BlueBack<0+3 then BackSum:=BacKkSum+13 { / contrasting text, }
if OldBackSums »BackSum then bedin {Color change}
case BacKkSum of
O: LabelColor:=FunnyChariBlackls { A +
1+ LabelColor:=FunnvCharfBluel} { A\ ¥
2: LabtelColor:=FunnvCharl{Greenli { \ Translate the }
3: LabelColor:=FunnvChariCvanls { \ RGB backdround ¥
d: LabelColor:=FunnvChariRedl} { / sum to a ¥
S: LatelColor:=FunnvChariMadentals { / complementary }
6: LabtelColor:=FurnnvChariYellowls { 7/ text color, }
7: lLabelColor:=FunnvyCharlkhitels { / }
endi {case BacksSum of?}
MenmuLines {print the menu linel
DldBackSum:=BackSums3 {store for future comparisons}?
set_color_table(i,sl-RedBack, { N Make pen one ¥
1-GreenBack { » complemevntary, }
1-BlueBack): {/ too. }
endy {if}
set.color_model(2)3 {HSL?}

endi {if TableEntry=0}

One point brought out by the preceding exampile is that the models can be mixed freely. There
is nothing to prevent using the RGB model to set a gray background color and a black pen, and
then using the HSL model to produce the rest of the palette. Use whatever is easiest for what
you want to do.

If you are interested in pursuing the color models, the RGB model is called a Color Cube and
the HSL model is called the Color Cylinder. These models represent idealized color spaces and
are discussed next.

Color Graphics

Color Spaces

If you ask a broadcast engineer what the primary colors are, he will probably tell you “‘Red,
green, and blue.” If you ask a printer what the primary colors are, he will probably tell you
“Cyan, magenta, and yellow.” If you ask a physicist, he will probably smile and say ‘‘That’s not
the right question.” Let’s see if we can get enough information about color systems to ask the
right question.

Primaries and Color Cubes

The reason for the confusion is that there are two sets of color primaries. Red, green and blue
are additive primaries. Cyan, magenta, and yellow are subtractive primaries. Each of these sets
of primaries can be used to construct what is referred to as a color cube. These are called the
RGB color cube and the CMY color cube.

Each of the color cubes can be used to describe a color space. Color spaces are mathematical
abstractions which are convenient for scientific descriptions of color. This is because the color
spaces provide a coordinate system for describing colors. Once you have a coordinate system,
you can talk about and manipulate colors mathematically.

In addition to the color cubes, other color coordinate systems exist. While there are many, we will
only look at HSL Color Space, because it is one of the available color models on the Model 236
Color Computer. First, the cubes.

109

110 Color Graphics

The RGB Color Cube

The RGB color cube describes an additive color system. In an additive color system, color is
generated by mixing various colored light sources. (Color mixing is discussed in “‘Effective Use
of Color,”” below.)

The origin (0,0,0) of the RGB color cube is black. Increasing values of each of the additive
primaries (Red, Green, and Blue) move towards white (the opposite corner of the cube.) The
maximum for all three colors is white (1,1,1).

A diagonal of the cube connecting (0,0,0) and (1.1,1) represents gray shades, which are
generated by incrementing all three color axes equally.

The RGB Color Space
NOTE: This photo is a multiple exposure of Model 236 Color Computer CRT.

Color Graphics 111

The CMY Color Cube

The CMY color cube represents a subtractive color system. In a subtractive color system, colors
are created by subtracting colors out of a pure white (containing all colors equally) light source.
This most often occurs when light is reflected off of surfaces containing, or coated with, pig-
ments. This happens in printing and painting, among other operations.

The origin (0,0,0) for the CMY color cube is white. This represents all the colors in a perfect
white light source being reflected by a white (reflecting all colors) surface. Increasing values of
each of the subtractive primaries (Cyan, Magenta, and Yellow) move towards black (the oppo-
site corner of the cube.) The maximum for all three colors is black (1,1,1).

A diagonal of the cube connecting (0,0,0) and (1,1,1) represents gray shades, which are
generated by incrementing all three color axes equally. While the CMY color model is not
supported by the DGL, it is important to understand when you get to color hard copy.

CMY Color Space
NOTE: This photo is a multiple exposure of Model 236 Color Computer CRT.

112 Color Graphics

The HSL Color Cylinder

The color cubes are very useful for working with physical systems that are based on color
primaries. They are not always intuitive, though.

The HSL color cylinder resides in a cylindrical coordinate system. A cylindrical coordinate
system is one in which a polar coordinate system representing the X-Y plane is combined with a
Z-axis from a rectangular coordinate system.

® The coordinates are normalized (range from O through 1).

® Hue (H) is the angular coordinate.

e Saturation (S) is the radial coordinate.

e Luminosity (L) is the altitude above the polar coordinate plane.

The cylinder rests on a black plane (L = 0) and extends upward, with increasing altitude
(Luminosity) representing increasing brightness. Whenever luminosity is at 0, the values of
saturation and hue do not matter.

Luminosity

HSL Color Cylinder
NOTE: This photo is a multiple exposure of Model 236 Color Computer CRT.

White is the center of the top of the cylinder (L =1, S=0).The center line of the cylinder (S = 0) is
a line which connects the center of the black plane (L =0, S =0) with white (L =1, S=0) through a
series of gray steps. (L from 0 to 1, S=0). Whenever saturation is O, the value of hue does not
matter. The outer edge of the cylinder (S=1) represents fully saturated color.

Color Graphics 113

LUMINOSITY =1
SATURATION =0

GRAY SCALE

DESIRED

COLOR SATURATION

/

BLACK

SATURATION =1 LUMINOSITY =0

LUMINOSITY =0

HSL Color Specification

Using the above drawing (HSL Color Specification,) hue is the angular coordinate, saturation is
the radius, and luminosity is the altitude of the desired color.

114 Color Graphics

Reality Intrudes

It would be fantastic if that were all you needed to understand in order to use the color capabilities
in DGL. Unfortunately, ‘‘Reality rears its ugly head.” HP does not make a piece of hardware
capable of supporting the system described above. The Model 236 Color Computer is as close as a
Series 200 computer comes to the color modeling system described above, and it only approxi-
mates it.

However, now that the idealized color system has been described, we can tackle some real
hardware that DGL supports. We will start with the simplest display device (a plotter) and work up
to the most complex (the internal color-mapped frame buffer in a Model 236 Color Computer).
Along the way, some of the hardware dependencies that make each device unique will be brought
out.

Plotters

Numerous plotters are supported by DGL. All plotters support color as an attribute of graphics
primitives to the extent it is possible with the humber of pens available on the plotter. The SET_
COLOR and SET_PGN_COLOR procedures select the pen used used to draw the primitives.
Using a color selector of 0 will usually put whatever pen is in use away. Calls to SET_COLOR_
TABLE are ignored when a plotter is specified as the display device. Plotters do not support the
color modeling system.

Color Graphics

Frame Buffers

The internal displays on Series 200 computers all have bit-mapped graphics, as does the HP
98627A. An area in memory called a frame buffer stores a binary description of each pixel
location on the display.

Frame Buffer Depth

The number of bits available for describing each pixel is called the depth of the frame buffer. On
all displays except the 98627A Color Output Interface and the Model 236 Color Computer, a
single bit is used to describe each pixel location. A single bit allows each pixel to be on or off.
This can be thought of as representing one of two colors (black or white, since the CRT is
monochromatic). A one-bit frame buffer and the display it produces look something like this:

One Bit
Frame Buffer System

%
%
%
%)
%
%
%
%

1
%
I__

—~ (OO0
ANTN] B AN RN TS TN N ST
AN TN B AN TAST AN N TN AN
Q| (Q—(
AN TN LN N B TN TN TN AN
QI Q|IR|I0N—ON®
(AN AT TN TN N] R [N AN
(AT IWNTTNT TN ST TN B TN
Q0|00 —

rame Buffer Display
One bit Frame buffer

115

116 Color Graphics

The 98627A has a three-bit frame buffer, allowing each pixel to be set to one of 8 colors (Black,
Red, Green, Blue. Cyan, Magenta, Yellow, and White). Instead of storing ones and zeros (like a
one-bit frame buffer), a number between 0 and 7 can be stored.

Three Bit
Frame Buffer System

B|8|8|518|8|B[B(9|!
BBB5|8(8|B|8]|1]|a |
2l2|121912]|2]|2|2|2]2
B|¥8|51|9]|8|1|8(B(0 I
B|B|B|S10|1|18B[B|B
B[B|YB5]|118|8|8|8|0
B|BBS|18|RIBLB[B[B]
B|¥|1|15]|8|8|8(B |88
B118(5]|89|18|8(8|8|8
11818915|9|8(0]|8|8|0
Frame Buffer Display

Three Bit Frame Buffer

The Model 236 Color Computer has a four-bit frame buffer. A four-bit frame buffer allows each
pixel location to contain a number between 0 and 15 (inclusive). Thus the Model 236 Color
Computer can set a pixel to any of 16 different colors. The presence of a color map in the Model
236 Color Computer complicates this somewhat, by giving you control over the colors that
each of the 16 possible entries in a frame buffer can actually represent (this is a palette of 16
colors out of a gamut of 4016 colors - see the color map description, below). For now, just think
of the Model 236 Color Computer as having 16 colors that the user can define.

Faking More Colors From a Frame Buffer

If you have a one-bit frame buffer and need more colors, you can go up to a three- or four-bit
frame buffer to solve the problem. If you already have a four-bit frame buffer and need more
colors, the problem is more difficult to solve. The same solution that allows you to add more
colors to the four-bit frame buffer also allows you to add more colors to a three-bit frame buffer,
or even to a one-bit frame buffer. (O.K., it’s actually shades of gray in a one-bit frame buffer.)
The technique is called dithering, and is supported on all Series 200 frame buffers.

Color Graphics 117

Dithering

In early color systems which did not provide control of the intensity of individual pixels,

dithering became a very popular method of increasing the number of shades available to the

machine. In dithering, halftoning is used to create the impression of a larger palette than the

system hardware actually supports. This is done by creating patterns of dots of the available

colors which the eye will (hopefully) combine into a perceived color different from the colors

used to produce the patterns. The effectiveness of this technique depends on the distance from

the display, the patterns involved, and the eye of the beholder. For example, if you want to .
produce a half intensity red, you can turn on half the dots in an area, and it will look half-bright.

The 50% pattern fools the eye quite effectively.

o
s
NN
-J
n
o
0]
|
o~

.
o B S

(Fh}
- .‘J
-~
LN
)
a
n
=l
o~
n
m
“
T
Ma
";‘ -.o

Half Tone Color Selection

Thus, by reducing the effective resolution of the system, it is possible to provide a large number of
shades of color. On Series 200 computers, this is done by imposing a grid of 4 X 4 squares on the
CRT, that is, each of the squares is 4 pixels square. With a one bit frame buffer, it is possible to get
17 shades of gray in the square (all pixels off, and 1 thru 16 pixels on). On a 3 bit frame buffer (the
HP 98627) there are three colors available, providing 4913 (17°) shades. For a 4 bit frame buffer,
there would be 83521 (17%) shades, if the colors represented by the frame buffer were fixed. On the
Model 236 Color Computer, however, it is possible to alter the colors represented by the frame
buffer value, so the number of colors representable is variable - it could be larger or smaller than
83521 (which is more than the number of dithering squares available on the display, anyway)
depending on the contents of the color map.

118 Color Graphics

Creating A Dithered Color

The following discussion gets a little abstract. and it is not absolutely necessary to understand
how dithering works to use it. It is interesting information, and can be useful knowledge if
dithered areas don't do what you expect.

A color vector is a directed line connecting two points in RGB color space. The dithering
process tries to match a target vector by constructing a solution vector from colors available to
the frame buffer. The actual dithered color to be produced will be 16 times the target vector,
since 16 points in the dither area will be combined to create it.

The color matching process requires sixteen steps. First, the target vector is compared to the
vectors produced by all the colors in the color map. The one which is closest to the target vector
is selected as the first component of the solution vector. The distance between the points in the
RGB color space is used to determine how far apart the vectors are.

The following process is then repeated 15 times:

1. The target vector is added to itself to produce a new target vector.

2. A trial solution vector is created for each color in the color map by adding the vector for
the color map entry to the previous solution vector. The trial solution vector that is closest
to the target vector is selected as the new solution vector.

At this point, the target vector is 16 times the original target vector, and the solution vector
consists of a summation of color vectors available to the frame buffer that produce, at each
iteration, the vector closest to the target vector.

If all this has left your head spinning, let’s take a look at a simplified system to see how the
process works. Our simplified system will be a two color system (to keep it a two dimensional
problem) with a 2 x 2 dither cell (which means we only have to look at four steps in the total
process).

We will use green and red (let's not get “‘tangled up in blues’) for the two axes. There will be
three colors available to the frame buffer - a unit green, a unit red, and a combination of a unit
red and a unit green. The vectors each of these colors produce is drawn at the top of the “‘Color
Vector Matching” Diagram, shown below. At each step in the process, the target vector is
labeled ““T"” and the solution vector is labeled *‘S.”" In addition. the test vectors that are not
used are shown, with no labels on the endpoints.

Available
Color Vectors

G G
- 9
Use Use
Color Color
Vector Vector .
/
3 2 //
T
//// S S
1R 1R
G G
Use Use S
Color Color T
Vector T Vector | 7%£f
! 3
R / R

Color Vector Matching

Available
Color Vectors

1 2 ;//

Color Vector
Angle: 40
Magni: 1.00@

T

No
Vectors
Excluded

—————

Color Vector
ARngie: 18
Magni:

Excluded |
Vectors

1.00

-

..... T Color Vector
Angle: 80
Magni: 1.00

Excluded
Vectors

Color Vector
Angle: 45
Magni: 8.50@

No
Vectars
Excluded

........ ;7?

1

Two Dimensional Target Square

Color Graphics

In actuality, the entire set of colors available to the frame buffer is not necessarily used for
creating a color. Before the color matching process is started, the colors available to the frame
buffer are sorted into two groups; those within the target cube, and those outside the target
cube. The target cube is the cube formed by using the origin of the RGB color space and a point
representing 16 times the target vector as diagonal corners to form a cube. Going back to our
two dimensional model, we will construct a target square for the system. For a vector near one
of the axes, the unit vector on the other axes will be excluded from the solution set, since it lies
outside the target square.

119

120 Color Graphics

Once the colors have been selected for the solution vector, the colors are sorted by luminosity
and filled into the following precedence matrix (the most luminous color is filled into the lowest
numbered pixel):

31151 2114
11 7110 6

The dither precedence matrix is actually tied to pixel locations on the CRT. The matrix is
repeated 128 times across the CRT and 97.5 times from the top to the bottom of the CRT (for a
512 by 390 display - just divide the number of pixels on each axis by 4 to get the number for
other display sizes). Areas to be filled are mapped against the fixed dithering pattern. All dither
cells completely within an outline to be filled are turned on according to the precedence pattern.
Cells which are only partially within the border are only partially enabled. If the area fill pattern
calls for a pixel outside the boundary to be set, it will not be.

There are problems with dithering:

e The dithered colors are not necessarily accurate representations of the color specified. Looking
at the ““‘Color Vector Matching” Diagram shown above, the solution vector does not actually
match the target vector, it just comes near it. This is highly dependent on the colors available to
the frame buffer. A 4-by-4 dither cell with one full intensity green pixel does not look the same
as the same cell filled with 1/15 green.

e The dithered color selection tends to produce textures. In some cases, the textures overwhelm
the shade produced.

e The dithered colc.s are not stable if the color map is altered on a Model 236 Color Computer.
(This is discussed in more detail under ‘‘Color Maps,”” below.)

e The dithering operation produces anomalies when the area to be filled is thin. If it is less than
four pixels wide or high, it cannot contain the entire dither cell and the results can be surprising
for colors which turn on small portions of the cell.

Color Graphics

If You Need More Colors

If you have an application that requires more colors than are available to your frame bulffer, the first
thing to do is see if you can redefine it to use the colors available to the frame buffer. In many cases
this is possible, and the higher quality of the frame buffer palette is worth a little checking to see if
you can use it.

If you have to use dithering, here are some hints for getting the best results:

e Check the colors to see if you are going to get objectionable texturing. Sometimes relatively
minor shifts in color definition can produce significant differences in the patterns used in
dithering.

® Remember - you can’t draw lines with dithered colors. The DGL will automatically use the
closest available color from the frame buffer.

e If you are on a Model 236 Color Computer, make sure your color palette is correctly set up for
dithering.

On all frame buffers other than the Model 236 Color Computer, all the color table entries are
potential dithered colors. On a Model 236 Color Computer, however, only the upper half of the
color table (16 thru 31) are dithered colors. The lower half of the color table maps directly to the
hardware color map. The color map is one of the most powerful graphic tools yet invented. It is
described below, under ‘The Model 236 Color Computer Color System.”

Frame Buffer Contents

Now that you understand frame buffers and dithering, it’s possible to describe what is actually
found in a frame buffer. At any given time, the values written to the frame buffer fall into four
categories:

e Background Value - Whenever CLEAR_DISPLAY is executed, all the pixel locations in the
frame buffer are set to the current background color. The background color is described by
entry O in the color table.

e Line Value - The SET_COLOR statement is used to determine the value written to the frame
buffer for all lines drawn. This includes all lines (including characters created by GTEXT) and
outlines (for polygons with the edge parameter true in the polygon style table).

e Polygon Interiors - The SET_PGN_COLOR statement is used to specify the value written to

the frame bulffer for filling areas (for polygons with the fill attribute true in the polygon style
table).

e Dithered Colors - when an application uses more colors than the frame buffer can support
directly (see ‘“Frame Buffer Depth,”” below), dithering is used to create as close an approxima-
tion of the color as can be done by mixing colors available to the frame buffer. Dithered colors
can only be used for the background and for polygon interiors, not for lines.

121

122 Color Graphics

The Model 236 Color Computer Color System

The biggest benefit of the Model 236 Color Computer is that it makes experimenting with color so
easy. With a bit-mapped frame buffer and a color map, it is easy to test out ideas before you use
them. It is also possible to use the color map for simple animation effects and some just plain
impressive images.

Itis possible to use the Model 236 Color Computer with the default color map. The color used will
depend directly on the value in the frame buffer. This is fine if the work you are doing can be
accomplished using the 16 colors supplied as the system defaults. This is often not the case, and this
overlooks one of the most powerful features of the Model 236 Color Computer - the color map.

The Color Map

The color-mapped system uses the value in the frame buffer as an index into a color map. The color
map contains a much larger description of the color to be used (12 bits in the Model 236 Color
Computer) and, just as importantly, the color description used is indirect. Thus, the value in the
frame buffer does not say “‘use color 12", but rather ‘‘use the color described by register number
127,

Frame Buffer Red Green Blue

15
14
13

/12 1001 1100 1011 J————
11
|

/ lg
a ;
’ ?
3
5
4
3
2
1
g
Color Map
Display
- 1]]
Red [0]
D/A ?
P 1] 7
- /Greenl_
D/A (9]
0 -
- 1]]
Blue [g]
D/A i_‘

Color Map

The CRT refresh circuitry reads the value from the pixel location in the frame buffer, uses it to
look up the color value in the color map, and displays that color at that pixel location on the
CRT. Thus, it is possible to draw a picture with a given set of colors in the color map (a set of
colors is called a palette) and then change palettes and produce a new picture by redefining the
colors, rather than having to redraw the picture. (The binary numbers in the color map are
created by the system. The user deals with normalized values. as described under ‘‘Color
Specification.””)

Color Graphics

True User Definable Color

The colors available are true user definable colors. The color can be changed on a pixel-by-
pixel basis, so there are no restrictions on how the colors can be used (as there are with dithered
shades, which can only be used for filling polygons). There are also no problems with texturing,
as the color is not produced by mixing dot patterns.

Retroactive Color Changes

Another advantage of the color map colors comes from the indirect nature of the color map.
Since the frame buffer contents only point to locations in the color map, it is possible to change
the contents of the color map after an image has been created in the frame buffer, allowing
“fine tuning”’ of the image after it has been created.

If You Need More Than 16 Colors

If you have an application that requires more than 16 colors, the first thing to do is see if you can
redefine it to use 16 colors. In many cases this is possible, and the higher quality of the color
mapped palette is worth a little checking to see if you can use it.

The Model 236 Color Computer provides dithering for applications that require more shades than
the 16 colors that are available at any single time with the color map. The upper half of the color
table (entries 16 thru 31) provide access to dithered colors, although they will fill with a single pen if
the color requested exists in the current color map.

If you absolutely have to get at a larger palette, then load a palette optimized for dithering (optimiz-
ing for dithering is described below) and stick with dithering. Don’t try to mix color map redefini-
tion and dithering - it will probably cause you a lot of grief. Especially, do not try to do interactive
redefinition of the color map in a system that is also using dithering.

123

124 Color Graphics

Optimizing For Dithering

The actual color palette you require determines the optimum color map values. Below are
some plots of color matching on the simplified color system introduced under the discussion of
dithering. Each plot is trying to match the same target vector, but using a different palette. The
effect of various color maps on the distance between the target and solution vectors is striking.

Color c Color -
Vector Vector
Set Set
1 2 1 2‘
T T
3_ 4_ // 3_ 4— /

Color Map Effect on Color Vector Matching

Color Graphics 125

It's obvious from the drawing above that the larger the color map, the closer the match to the
target color, right? Well, it's obvious from that drawing, but let’s take a look at a slightly different

color to match, and see what happens.

Vector Error = Vector Error =
Set 1.1774409 Set 0.28208470

Color ¢ Color G
Vector Error = Vector Error =
Set B.4826580 Set 0.2820470

S, T

Color Map Effect on Color Vector Matching - Part 2

The point is, that the quality of color matching depends on both the contents of the color map
and the color to be matched.

126 Color Graphics

Resolution and Color Models

The resolution available with the two color models depends on the hardware being used to
generate the color. Resolution on devices that use dithering is complicated by the variation in
quality of the colors produced by dithering. Resolution of the color map is easier to deal with, so
let's see what's available.

RGB Resolution

The resolution of the RGB model is limited by the 4-bit digital to analog converters in the Model
236 Color Computer graphics hardware. The 4-bit converter allows 16 states to exist for each of the
CRT electron guns, so the resolution of each of the RGB parameters is 1/15, from O thru 1. In fact,
since the SET_COLOR_TABLE statement accepts real arguments, you can express the values as
fractions, and let the computer convert to decimals. The following call would set the background to
about 50% gray.

SET_.COLOR.TABLE (0y 7/15, 7/15, 7/15)

HSL Resolution

The resolution of the HSL model is not specified anywhere. This is because the resolution for the
various parameters is not a fixed value. The resolution for any parameter of the HSL systern is
dependent on all three of the parameters. The resolution is not only changed by the other two
parameters, but also by the magnitude of the parameter you are varying.

Color Graphics 127

Writing Modes and Color

Since HP Series 200 frame buffer devices are bit mapped, it makes sense that various logical
combinations of the bits in the frame buffer with the bits being added by a drawing operation
should be possible. Since this is a highly device dependent operation, the various drawing modes
are specified with calls to OUTPUT_ESC. Four drawing modes are available:

® Dominant

® Non-Dominant
® Frase

e Complement

Three of these drawing modes have already been introduced (all but non-dominant) in Chapter 2.
The meaning of the modes is slightly different for a color system than for monochromatic systems.
The actual meaning of each of the modes is discussed below, but first, a slightly modified version of
the DrawingMode procedure presented in Chapter 2 is listed below. The non-dominant drawing
mode has been added to it.

SPaded [RFEREEERERRERRR RN R R R R R AR RN RN R R R RN RE R R R RR RN IR R R RN R RN FRRRHH]
procedure DrawindgMode(Mode: DrawingModeType)s

R e e g }
{ This procedure selects drawind modes for a color-mapped CRT, }
f m m e e e ¥
const
SetDrawindMode= 10523 {mnemonic better than madic number?
var
DrawMode: array [1++1]1 of inteders {\ This is all stuff that 1}
Rarray: array [1+411 of reali { *» is needed by the }
Error: inteders £/ "putrPut.esc" procedure. ¥
bedin {procedure "DrawingMode"}
case Mode of {\ }
Dominant: DrawModel11:=03 { A\ Convert DrawingMode enumerated 3}
NonDominant: DrawModell1J:=13 { \ tvpPe into the appropriate }
Erase: DrawModel[11:=23 { / wvalue for OUTPUT_ESC procedure, }
Complement: DrawModel11:=33 { 7/ ¥
endi {casel} {7/ }
outrPut_esc(SetDrawindgMode sl s0sDrawModesRarravsError) {set it}
if Error<>0 then writeln{(‘Error ’“+Error:0s’ in procedure "DrawingMode®, ')}
endsi {procedure "DrawingMode"}

The global TYPE declaration for brawingModeTrre must also be changed:
DrawindModeType = (Dominants Erases Complement, NonDominant)3

“Draw” has been changed to ‘“Dominant’”’ to make it consistent with references to the non-
dominant mode’

128 Color Graphics

Dominant Writing

Dominant writing is the easiest to understand. When DGL has a new value to write to a location in
the frame buffer, whatever is already in the frame buffer is overwritten, and thus lost. The system
wakes up in the dominant mode.

Non-Dominant Writing

All the techniques described up until now have dealt with dominant writing to the frame buffer. In
the dominant writing mode, the color selector is written directly to the color map, and overwrites
whatever is currently in the frame buffer. In non-dominant writing, a bit-by-bit logical-or is per-
formed on the contents of the frame buffer and the table entry selector value being written to the
frame buffer. Thus, if color selector 1 is written to a buffer location that has already been written to
with color selector 6, the buffer location will contain 7, but writing color selector 2 to a buffer
location that has already been written to with color selector 6 will not change the contents.

Erasing

Erasing is a fairly simple concept in frame buffers that are a single bit deep. You just restore the
background by setting the portion of the frame buffer you wish to erase to 0. The concept is a little
more complex in frame buffers with more depth (such as the Model 236 Color Computer.) At the
simplest level, you can simply set the contents of the frame buffer to the background color, using a
call to CLEAR_DISPLAY.

It is also valuable to erase a single line. This can be done by setting the drawing mode to erase, and
then re-drawing the line you wish to erase. In the erase mode, the erasure is done non-dominantly.
This means that the bits which have a 1 value in the current color table entry selector are cleared to
0 in the frame buffer entries that are modified by the line drawn in the erase mode. For example, if a
table entry selector of 5 is used to erase the a line written with a table entry of 5, the frame buffer
entries are returned to 0. If, however, the same line crosses a frame buffer entry of 7, the result is a
value of 2 (only the bits set in 5 are cleared to 0 by the operation.

The only method that insures erasing a line is to select the dominant writing mode and draw over
the line in the background color. This is done with a table entry selector of O (for the frame buffer
background) or a table entry selector equal to a “local background,” if the line you are trying to
erase is drawn across an area filled with a color other than the background color.

Complementary Writing

The complementary drawing mode is provided for operations (such as making your own cursor)
that need to put an image on the screen that is always visible, but that can also be taken off the
screen without damaging the background. On the Model 236 Color Computer, the concept of a
complementary pen is extended to deal with the 4-bit values in the color map. In the non-dominant
mode, the bit pattern represented by the table entry selector will be exclusively-ORed with the
contents of the frame bulffer.

The complement occurs only for the bits which are one in the table entry selector. Thus an entry
selector of -6 would complement bits 1 and 2 of the frame buffer. If a 1 exists in a frame buffer
location and a line is drawn over it with entry selector 6, a 7 will now be in the location. Writing over
the pixel with the same table entry selector will return it to a 1.

Making Sure Echoes Are

Visible

Color Graphics

It is important to understand that the complementing is of the frame buffer, not the color map.
You are responsible for making sure that the complimented frame buffer values are visible
against one another. Be careful of placing the same color in two locations on the color map that
are complements of one another. If you pick one of them as an echo color and then try to use

the echo over an area filled with the other value, you will not be able to see it.

Drawing Modes and the Frame Buffer

Let’s try to make things a little more concrete. We will look at a 9 x 9 section of a frame buffer,
and draw some lines in the various modes, with different table entry selectors. Starting in the
dominant mode, if we draw a cross with a table entry selector of 5, and then put a square with a

table entry selector of 7 down on top of it, the following frame buffer results:

B | 8|08 |0 |6 |00
|00 |09 B |00 |0
8|18 |7 |7 2|7 |0 |0@
B | |7 |0O |7 0|0
S|S |7 |5 S |7 |5 |5
B |0 |7 |0@ 8|7 |06 |0
8 ({07 |7 2|7 |0 |09
| |06 |0 B | 8|0 |0@
|6 |06 |0 |0 |0 |0

Dominant Writing to the Frame Buffer

129

130 Color Graphics

[f we then set the erase drawing mode and use a table entry selector of 5 to try to erase the
horizontal element of the cross. we end up with two pixels of the horizontal element not erased.
since the square had changed those locations to a 7. and the erase mode only erases the bits
that are set to one in the table entry selector. The frame buffer ends up looking like this:

vw| || B |B|5] 8|0 |8 |0

| 88| |5|08 |0 |0|0

Erase Writing to the, Frame Buffer

If you want to set a line to the background color, do it in dominant mode. with a table entry
selector (in SET_COLOR) of 0.

Color Graphics

Now, clear the frame buffer, and let’s take a look at non-dominant writing. Non-dominant
writing or’s the contents of the frame buffer with the table entry selector. Let’s put the cross and
the square in the frame buffer, again, but this time we will use non-dominant mode, and a pen
selector of 2 for the square. The cross will be written first, and then the square. The following

frame buffer results:

v | 8| 8|5 |86 |0 |0|0
| 8|86 |5|0|0 |0 |0
@ | @22 |7 |2]|2|686]|0
8|82 |86 |5|08 |2 |06 |6
SIS |72 |S|S|S5]|7 |55
B |82 |06]S | B |2 |0 |0
v |2 |2 |7|2|2|6 |6
||V |OB|5|(0|0 |0 |0
v |0 |06 |50 |8 |80 |0

Non-Dominant Writing to the Frame Buffer

Now let’s try some complementary writing to the frame buffer we got from the non-dominant
writing example, above. We will draw over the horizontal line, using a color table entry selector

of 7. The first time, we get the following:

| 8|08 |50 |0 |B |0
| 8|0 |08 |5|0 |0 |0 |0
p|B|2 |2 |7 |2]|]2 |60
Bl |2 (B35 |82 |80
221822 |2 |686]2]°¢2
Bl |28 |5 |88 |2 |00
g || |27 |22 |66
Q|8 |6 |0 |5|8 |0 |B |0
| B| |0 |5 |0 |0 |0 |0

Complimentary Writing to the Frame Buffer

131

132 Color Graphics

[f we do it again. we end up with this:

|| B®|B|S5S|0|0 |0 |0

More Complimentary Writing to the Frame Buffer

Notice that the first line is highly visible (assuming the color map contents do not produce the
same colors for several entries in the frame buffer), but that the frame buffer is restored to it’s
original values after the second operation. This will not be true if a line is drawn through the
area before the complimentary line is ‘“‘undrawn.’” Always undraw complimentary line before
you try to add things to the frame buffer.

Special Considerations

The drawing modes mentioned above are only available on frame buffers. There are some
special interactions with various primitives in the graphics system that need to be taken into
consideration.

Text

When text is written in the complimentary mode, gaps will be produced in the characters,
wherever the character intersects itself. This includes crossovers and endpoints of lines that
overlap. Readability of the text can be heavily impacted by this. Make sure you want the result
before putting GTEXT calls while the drawing mode is complimentary.

Polygons

Device independent polygons (INT_POLYGON and POLYGON) are written to the frame
buffer using the current drawing mode. Device dependent polygons (INT_POLYGON_DD and
POLYGON_DEV_DEP) ignore the drawing mode. Make sure you use the correct one if you
want the drawing mode to work.

Color Graphics

Effective Use of Color

At the beginning of this chapter, it was pointed out that color is a very powerful tool, and that it
is also easy to misuse. While it is beyond the scope of this book to provide an exhaustive guide
to color use, a few comments can be made on using color effectively.

This section will deal with seeing color first, to lay the groundwork. This is followed by a
discussion on designing effective display images, since effective color use is almost impossible if
the image is fundamentally unsound.

After laying the groundwork, effective color use is discussed, from both the objective and
subjective standpoints.

Seeing Color

The human eye responds to wavelengths of electromagnetic radiation from about 400 nm to
about 700 nm (4000 to 7000 angstrom). We call this visible light. Visible light ranges from violet
(400 nm) to red (700 nm). If all the frequencies of visible light are approximately equally mixed,
the result is called white light.

The eye’s ability to discriminate color is reduced as the light level is reduced. This means that
the variety of colors perceivable at low light levels is smaller than the variety at higher light
levels.

The eye is most sensitive to colors in the middle of the visible spectrum, a yellow-green color.
The eye is least sensitive to the shorter wavelengths, which are at the blue end of the spectrum.
Sensitivity to red is between that of yellow-green and blue. Two things seem to be associated
with the sensitivity of the eye to various colors:

® The eye can distinguish the widest range of colors in the yellow-green region, and the
smallest variety of colors in the blue region.

® The eye is most sensitive to detail in the yellow-green region.

Why and how any of the above works is explained by color theorists. There are a large number
of theories of color, and all of them work for explaining the specific phenomena the researchers
were studying when they developed the theory, but none of them seem to be able to explain it
all. The list of references at the end of this chapter include several on how vision works.

It’s All Subjective, Anyway

One of the reasons that there are so many color theories is that no two people seem to perceive
color the same way. In fact, the same person will many times perceive color differently at
different times. In addition to the physiological and psychological variables in color perception,
many environmental factors are important. Ambient lighting and surrounding color affect the
perceived color tremendously.

At this point, it will be well worth your time to compile and execute the program “COLOR”, from
the “DGLPRG:” disk. Try setting the background color to each of the pen colors, and see how
different the foreground colors look against the different colors. In some cases, the lines even look
slightly different from the filled rectangles of the same color. It turns out that the size of a color
sample affects how it is interpreted, too.

133

134 Color Graphics

The subjectivity of color, and the importance of background color in interpreting colors is the
whole reason the program "“COLOR" is provided. The color selector program lets you select
the background color and provides both filled areas and lines due to the effect of the back-
ground color and the size of the color sample on the perception of color. The only way to insure
a set of colors works well together is to try it and see.

Mixing Colors

If two distinct audio tones are played simultaneously, you will hear both of them. If the same
area is illuminated by two or more different colors of light, you will not perceive the original
colors of light, but rather a single color, and it will be not be one of the original colors. What you
will perceive is called the dominant wavelength.

The CRT uses three different colored phosphors {(Red, Green. and Blue) and mixes various
intensities of the resulting lights to produce one of 4096 colors at any point on the CRT. What
you actually see is the resulting dominant wavelength. This is an additive color system.

Mixing with pigments is a little different. Pigments in inks and paints absorb light. The idea with
pigments is to subtract all but the color you want out of a white light source. This is a subtractive
color system, and the primary colors are cyan, magenta, and yellow.

The different mechanisms for mixing additive and subtractive colors make it difficult to repro-
duce ime ;2s created with additive colors (like a CRT) in a subtractive medium (like a plotted or
printed page.) Photographing the CRT is the best method currently available for color hard
copy. This problem is discussed in more depth at the end of this chapter under “*Color Hard
Copy.”

Designing Displays
While the design of displays is not really a color topic, a few words about it are in order before

we get into the effective use of color. If the design of an image is fundamentally unsound, all the
good color usage in the world is not going to help it.

Whenever you put an image on a CRT, you have created a graphic design. The design will
either be a good one or a bad one. and if you know this, you have automatically increased your
chances of creating a good design. If you are going to be creating a lot of displays, either in a lot
of programs or in a single large program, you need a graphic designer. Many people have a
natural talent for graphics - an ability to look at an image and tell whether it is graphically sound
or not. If you don’t have that talent (or feel you could use some help) there are two courses of
action that might be productive for you; you can hire a graphic designer or become one.
Renting one is expensive and becoming one is time-consuming. but if you are trying to com-
municate with users, you have to understand graphic design. While getting a degree in graphic
arts may be impractical for some programmers, a course or two in the field will prove very
useful if you do very much programming.

While this book can’t turn you into a graphic designer, a few simple hints may help you on your
next program.

The most important thing in communicating with people is to keep it simple. Don’t try to
communicate the total sum of human knowledge in a single image. It is much more effective to
have several screens of information that a user can call up as required, than a single screen so
complicated that the user can't find what he wants on it.

Color Graphics

Try to redundantly encode everything, in case one of the encoding methods fails. For example,
if you color code information, use positional coding (the location of the information tells
something about the nature of the information) too. Remember, the person reading the screen
is probably not the person who wrote the program, and even if you are writing the program for
yourself, you may forget how it works by the next time you try to use it.

Another important thing to remember is to be consistent. Always try to place the same type of
information in the same area of the CRT and use the same encoding methods for similar
messages. Don’t using flashing to encode important information on one display and then use
inverse video for the same thing seven displays into the program.

Objective Color Use

In spite of the subjectivity of color, there are some fairly objective things that you should know
about color. Some of the things that can be done with color don’t depend heavily on subjective
interpretation.

Color Blindness

A fact of life that it is dangerous to ignore is that some people are color-blind. The most
common form of color blindness is red-green color blindness (the inability to distinguish red and
green). Avoid encoding information using red-green discrimination, or these people will have
difficulty using the system.

Subjective Color Use

Choosing appropriate colors for a program to use can be tricky, and constitutes a significant
part of the job of a good graphic designer. In the final analysis, it is a largely a matter of trying
combinations until you come up with a set of colors that look good together. If your application
is complex, it will be well worth your while to consult with a graphic designer about the color
scheme and layout of information displays for your program. There are, however, a few fairly
fundamental things to remember in designing your programs.

Choosing Colors
First, and probably most important, is to use color sparingly. Color always has a communication
value and using it when it carries no specific information adds noise to the communication.

Use some method for selecting the colors - one of the best is a color wheel, similar to the one shown
in the section on the HSL color model.

® Try varying the luminosity or saturation of a color and its complement (opposite it on the
color wheel).

® Try color triplets (three equally-spaced colors) and other small sets of colors equally-
spaced around the color wheel.

® Pastels (less than fully-saturated colors) tend not to clash.

Give careful attention to your background color. Remember that a filled area can become the
background color for a portion of the image on the CRT.

o [f you are using a small number of colors, use the complement of one of them for the
background.

e [f you are using a large number of colors, use a gray background.

135

136 Color Graphics

If two colors are not harmonious, a thin black border between them can help.

Use subtle changes (such as varying the saturation or luminosity of a hue) for differentiating
subtly different messages and major changes (such as large changes in the hue of saturated
colors) to convey major differences.

Most of all, think and experiment. The final criteria is “‘Does this display communicate the
message?’’.

Psychological Color Temperature

Temperatures ranging from cool to hot are associated with colors ranging from blue to red (ice
blue - fire red). This is actually the opposite of physical reality, where the higher the tempera-
ture, the shorter the wavelength (blue is a black body radiation of about 7600° K while red is
about 3200° K) but this is what people perceive as the relation between temperature and color.
This is probably because people very seldom deal with the high temperatures and associate the
blues with non-temperature related natural phenomena (oceans and ice). If you are trying to
portray temperature, electrical field strength, stress, or some other continuous physical system,
using the psychological color temperature can serve as a useful starting point for color coding
the values.

Cultural Conventions

When trying to use color for communicating, cultural conventions are useful. Red is widely
associated with danger in most western cultures, giving extra emphasis to a flashing red indica-
tor. By the same token, a flashing green indicator would be less effective for communicating an
out of range value in a system. In any specific application, it is important to understand the color
associations that are common for the group using the application.

Color Graphics

Reproducing Color Graphics

Color Gamuts

The range of colors a physical system can represent is called its color gamut. Color gamuts are
important when you want to convert between different physical systems, because the source
system may be able to produce colors the destination system cannot reproduce. An exhaustive
treatment of color gamuts is beyond the scope of this book. However, here are some rules of
thumb:

® The color gamuts for CRTs and photographic film are not the same, but are fairly close. If
you are lucky, you can photograph the CRT and catch it on film. It may take more than
one exposure, so be careful and bracket everything with several exposures.

® The color gamut for printing is significantly smaller than that of either photographic film or
of a CRT. The fact that you have a picture of a CRT does not mean you can hand it to a
printer and get a faithful reproduction of it.

® The color gamut of a plotter is much smaller than that of a CRT. You have to create images
with the limitations of a plotter in mind if you intend to reproduce them on a plotter (see
“Plotting and the CRT,”” below.)

The different color gamuts available are not a problem unless you forget the differences and try
to act like all physical systems have the same gamut. Think ahead if you have to reproduce
images - it will save a lot a trouble.

Color Hard Copy

Color hard copy represents a translation between color systems, and many of the problems in color
hard copy arise from the fact that the color gamuts available to the CRT and the hard copy device
are different.

There are two basic ways to get a color hard copy of what is displayed on the Model 236 Color
Computer:

o Take a picture of the CRT.

@ Re-run the program that generated the image with an external plotter selected as the display
device.

The first method is the easiest and can capture (usually) whatever is on the CRT, regardless of what
colors are used (see “‘Color Gamuts,” above.) The second requires setting up the Model 236 Color
Computer color map to match the pens in a plotter, and is not as likely to capture what you see on
the screen. Both methods are discussed below.

137

138 Color Graphics

Photographing the CRT

Photography is an art, not a science. Capturing images off a CRT is relatively straightforward.
but sometimes unpredictable due to the different color gamuts available for film and the CRT.
The following guidelines will provide a starting point. If your images are not *“‘typical’’ (whatever
that means) you may have to go back and re-photograph some of them. Many of the CRT
images in this book were captured using these guidelines.

e Use [SO 64 Color film. (Most of the color photos in this book were taken on Kodak
Ektachrome 64'))

e Set up your equipment in a room that can be darkened. It will have to be darkened for the
one-second exposure.

® Use a telephoto lens (the longer the better). This minimizes the effects of the curvature of
the CRT.

® Use a tripod.
® Darken the room and take a one-second exposure.

® Bracket the aperture around 5.6. (One stop above and below.)

Plotting and the CRT

There are two basic reasons the CRT is hard to capture on a plotter.
® The CRT is an additive color device and a plotter is a subtractive color device.
® The color gamut of the CRT is much larger than that of the plotter.

The conversion from additive to subtractive colors is not a huge problem if the plot is a simple
line drawing with few intersections and area fills. If the plot is complex, especially with lots of
intersections and overlapping filled areas, the plot is much less likely to capture the display
image accurately.

A possible technique described below purposely limits the color gamut of the CRT to give the
plotter some chance of capturing it.

To set up the color map and plotter to match one another:

® Set your background to white.

® Set up pens matching the color map colors in slots 1 through 8 in the same order they are
presented in the default color map listed under “‘Default Colors.”

® Use color table entry selectors from 8 through 15 in your drawings.

® Run the program with the color mapped CRT as the display device, modifying it as
necessary to produce the image you want on the CRT.

® Re-run the program with the plotter as the display device. You will need to subtract 8 from
the color table entry selectors to properly select the pens on the plotter.

While it is possible to get some idea of the plot that will be produced on the plotter, don’t be
surprised if they don’t look exactly the same. Colors on a CRT are different in source and form
from colors on a plotter, as described under “‘Seeing Color,”” above.

Color Graphics

Color References

The following references deal with color and vision. Texts that serve as useful introductions to
the topic are starred.

* Cornsweet, T., Visual Perception. New York: Academic Press, 1970

Farrell, R. J. and Booth, J. M., Design Handbook for Imagery Interpretation Equipment
(AD/A-025453) Seattle: Boeing Aerospace Co., 1975

Graham, C. H., (Ed.) Vision and Visual Perception New York: J. Wiley & sons, Inc., 1965
* Hurvich, L. M., Color Vision: An introduction. Sunderland, MA: Sinauer Assoc., 1980

Judd, D. B., Contributions to Color Science (Edited by D. MacAdam; 545) NBS special
publication Washington: U. S. Government Printing Office, 1979

* Rose, A., Vision: human and electronic. New York: Plenum, 1973

139

140 Color Graphics

Listings of Example Programs

Appendix

Directory
AxesGrid:

BAR_KNOB:

BAR_KNOB?2:

CharCell:
COLOR:
CsizeProg:
DataPoint:
DrawMdPrg:
FillProg:
FillGraph:
GstorProg:
IsoProg:
JustProg:
LdirProg:
LOCATOR:
LogPlot:
MarkrProg:
PLineProg:
PolyProg:
SinAspect:
SinAxesl:
SinAxes2:
SinClip:
SinLabell:
SinLabel2:
SinLabel3:
SinLine:
SinViewpt:
SinWindow:

Shows visual impact of axes and grids.

Shows interactivity with one degree of freedom.

Shows interactivity with two degrees of freedom.

Relationship between characters and characters cells.
Demonstrates the color map.

Shows how to select character size.

Supplies the data for all programs whose names start with “Sin”.
How to specify drawing modes (draw, erase, complement).
Shows how to do hatched and dithered area fills.

Does a broken-line chart with the area beneath the curve shaded.
Storing and retrieving graphic images.

Isotropic scaling.

Label justification.

How to specify label direction.

Demonstrates interactive drawing with many types of graphics cursors.
Shows how to make logarithmic axes.

Uses markers to highlight data points on a curve.

Demonstrates the POLYLINE procedure.

Using POLYGON procedure.

Defining aspect ratio of plotting device.

Unclipped axes.

Labelled, clipped axes.

Clipped axes.

Single-sized, horizontal letters.

Labels with sizes and directions specified.

Bold main title.

No viewport, no window, not much information.

Data displayed inside framed viewport.

Data mapped into user window.

141

142 Listings of Example Programs

AxesGrid

prodgram AxesGrid{output)i

import dgl_libsddl_inas {get drarhics routines}’
const
CrtAddr= 31 {address of internal CRT}
ControlWord= 03 {device controly O for CRT}
type
RoundTyres= (Upy Downys Near)s {used by function RoundZ}
var
Ratio: reals
VirtXmaxy YirtYmax: reals

LeftEddesy RidhtEdde: reals
BottomEdde TorEdde: reals

ClipXminy CliPXmax: reals
Clip¥miny ClirP¥max: reals
ErrorReturn: inteders {variable for initialization outcomel

$Paget [HEFXEFXERRERARRERRERRER RN R R RN RN F R AR RN EF R RERRRFHERRER R R HF]
procedure Frames

A T e T b
{ This procedure draws a frame around the current window limits. +
B L T T ¥
const
WindowlLimits= 43504 {mnemonic better than madic number?
tvepe
LimitOrder= (Xmins Xmaxs Ymins¥max) i
LimitTvees= array [LimitOrder] of reals
var
Pac: packed array [1.+s11 of chars { N\ These are the sundries 7}
Tarrav: array [1.411 of inteders { \ needed by the call to +
Window: LimitTvrei { / the DGL procedure }
Error: inteders { /7 "ina_ws", }
begin {body of procedure "Frame"?}

inq_ws{(WindowlLimits +yQ 404 +Paclarray sWindowsError) s

if Error=0 then bedin
move (Windowl¥minl sWindowl¥minl) s {move to lower left corner’
line(WindowlXminl yWindowlYmax])i {draw to uPrper left cornerl
line(WindowlXmaxlsWindowlYmaxd): {draw to uPPer right corner’}
line(WindowlXmaxl yWindow[¥minl) 3 {draw to lower right corner’
line(WindowlXminl yWindowl[¥minl) i {draw to lower left corner}

end {Error=07}

else writeln(’Error “sError:0y’ occurred in “Frame" ')}

endi {procedure "Frame"? {return’

$PagEd {FERXEEREFEEE AR AR ER RN RN RN RRR RN ERRNRER R R R RN R RN ER AR R RN}

procedure ClipLimit(Xminy» Xmaxs ¥Ymin, Ymax: real)s

I T }
{ This procedure defines the four 9global variables which specify where the }
{ soft clirp limits are. }

bedin

if Hmin<Xmax then b
ClipKmin:=Xmin}
ClipXmaxi=Xmax}

end

else bedin
ClipXmins=Xmaxi
ClipXmaxs=Xmini

ends

if Ymin<¥Ymax then b
Clip¥mins=Ymini
ClirpYmaxi=Ymaxi

end

else bedin
ClipYmin:=Ymaxi

egin

edin

\ clir limit
\ the smaller
/Y wvalues Pa

/ the procedu

{\

{ Force the m
{ \ clirp limit
{ \ the smaller
{ / K ovalues Pa
{ / the procedu
{ 7/

{7/

{\

{ A\ Force the m
{

{

{

{

{

{

Listings of Example Programs

inimum soft
in X to be
of the two
ssed into
Te.

inimum soft
in ¥ to be

of the two
ssed into
TE+

L e el

ClirYmax:=Ymini /
ends /
ends
Gpaded {HFERERNERFRRFRRFERRRRR R R R RN R R E R R RE R RN R R RE R RN RN R AR RRERRRARND
procedure ClipDraw(X1s Y1 X2y Y231 realls
T T e ¥
{ This procedure takes the endroints of a lines and clips its The soft +
{ oclip limits are the real dlobal variables ClipXminy ClipXmaxs ClirYmin: }
{ and Clir¥max, These mavy be defined throudh the procedure ClirLimit, }
T e ¥
label

13
tvpe

Eddes= (LeftsRightTorsBottom)3i {rossible eddes to cross’

OQutOfBounds= set of Eddesi {set of eddes crossed}
var

OutDutls0utZ2:0ut0fBoundss

Ky Y reali
T e ¥

procedure Code(X, ¥
bedin

Outi=[13

if x<ClipXmin then
else if x:ClipXmax
if viClirYmin then

: reali var Out: O

Quts=[lleftl
then OQuti=lridghtls
Dut:=0ut+lbottom]

ut0fBounds) 3
{nested procedure "
{null set}
{off left eddge?}
{off right edde?}
{off the bottom?}

Code"?}

elgse if v:Clie¥Ymax then OQut:=0ut+ltorls {off the tor?}
ends’ {nested procedure "Code"}
T T i }
bedin {bodv of procedure "ClieDraw"?
Code(X1,¥10utl)s {fidgure status of point 1}
Code(X2,Y20ut2)3 {fidure status of rpoint 2}
while (Duti1<*C1) or (Out2<»C1) do bedin {loopr while either Point out of range?l
if (Out1*0ut2)<*L] then doto 13 {if intersection non-nully no linel}
if Outl<>0] then Dut:=0utl
else Dut:=0ut2j {0ut is the non-emPty onel’
if left in Out then bedin {it crosses the left edde}
yesYI+(Y2-Y1)*(Clipmin-X1)/(X2-X1)i{adiust value of v appropriately?}
X:=ClirpXmini {new x is left edde}
end {left in Out?}
else if right in Out then bedin {it crosses ridht edgel}
yre¥14(Y2-Y1)*(ClipXmax-X1)/(X2-X1)i{addust value of v aPrproPpriatelv}
x:=ClipXmaxs {new x is ridht eddel}
end {right in Out?}

143

144 Listings of Example Programs

else if bottom in Out then bedin
P NIH(RE =K1Y *{ClipYmin-Y1)/ (Y2-Y
vi=ClipYmini
end A{bottom in
else if top in
Xr={I1+(K2-X
vi=Clir¥Ymaxi
endi {top in Out?}
if Qut=0utl then bedin
Kli=xs Yie=vi Code{x sy Outl)s
end {0ut=0uti?}
else bedin
H21=x3
endi {else bedin}
ends {whilel}
mouve(xlsvl)s
line(x2sv2)3

Qut?}

Dut then bedin

AETY - -
T v =%y

Codelx»y 1 Out2)s

yi{addiust

¥ (ClipYmax-Y1)/(¥2-Y1)i{adiust

{it crosses the bottom edde’}
value of x aeppropriately}
{new v is hottom eddel

{it crosses the top eddel
value of x approrriately?}

{new v is top eddel

{redefine first end Pointl

second end Polintl

{redefine

the line+.+}
visibley so draw it}

{if we det to this Point:
fv04ls completely

1: endi {procedure "ClipDraw"? {return}
FPAgEd (R R AREERERRRRRRER RN RN R R RN R AR AR RN R R EFRRE R RN NN N ERE AR RS
function RoundZ(Ns M: reals Mode: RoundTvre): reals
L e Lk T T R }
{ This function rounds "N" to the nearest "M", accordind to "Mode", This ¥
{ function works only when the ardument is in the rande of MININT.,,MAXINT, 1}
T T L L LT T e }
const

epsilon= 1E-107% {roundoff error fudde factor}
var

Rounded: reals {temrorary holding areal

Nedative: boolean: {flag: "It is medative?"}
bedin {body of "Round2"}
Nedativer=(N<0.,0) 3 {is the number negative?}
if Nedative then bedin

Ni=abs(N)3 {work with a positive number}

if Mode=Up then Mode:=Down

{if number is negatives 4+, .7

else if Mode=Down then Mode:=Upi {vvsoreverse uP and downd
ends
case Mode of {should we round the number,.,.,}
Down: Roundeds=trunc(N/M)*M3 {vesleft on the number line?}
Ur: bedin
Rounded:=N/M3 {vveright on the number line?}
if abs{(Rounded-round(Rounded)) >ersilon then
Founded:=(trunc(Rounded)+1,0)*M
else
Rounded:=trunc{Rounded)*M3
ends
Near: Rounded:=trunc(N/M+M*0,5) %M1 {+vsto the nearest multirle?}
endi A{case}

if Negative then Rounded:=-Rounded}
RoundZ:=Roundeds

ends

{reinstate the signlt
{assign to function
{function "RoundZ"}

name

Listings of Example Programs 145

FPagEd (R E R R E R R R R RN R R R R R RN R R R R RN AR RR RN RN RN RN RN RN RRRRERRRRRN D
procedure XaxisCliep(SrPacind, Location: reali Mador: integders
MadsizesMinsizes: real)s

{ This procedure draws an X-axis at any intersection point on the plotting 1}
{ surface. Parameters are as follows: +
{ Spacing: The distance between ticK marks on the axis. }
{ Location: The Y-value of the X-axis, ¥
{ Mador: The number of tick marks to de before drawing a mador tick }
{ mark, If Mador=5, every fifth ticK marK will be mador. }
{ Madsize: The lendth, in world unitss of the mador ticKk marks, H
{ Minsize: The lendthy in world unitss of the minor tick marks. ¥

var

h] reali

SemiMadsize: reali

SemiMinsize: reali

Counter: inteder} {keers track of when to do mador ticks?}
bedin {body of procedure "XaxisClie"}
SemiMadsize:=MajSize*0,3}
SemiMinsize:=MinSize*0,3}
Counter:=01 {start with a mador tick?}
ClirDraw(ClirXminsLocationsClirXmaxsLocation)
Hi=RoundZ(ClipXminsSracing*MadjorsDown) i {round to next lower mador}
while X<=ClipXmax do bedin

if Counter=0 then

ClirDraw(X Location-SemiMadsize{+Location+SemiMadsize)
else
ClipDraw(X Location-SemiMinsize XsLocation+SemiMinsize)s

Counter:=(Counter+l) mod Madori

Hi=X+58pPacindi
endd {while}
ends {procedure "XaxisClip"}
FPAgEd {FEREEREERRRRRR RN R R AR R AR RN R AR R R R RN R RN EERR RN RRRRNRRNR)
procedure YaxisClir(Spacings Location: reali Mador: integder;

Madsize» Minsize: real)s

{ This procedure draws an Y-axis at any intersection point on the plotting 1}
{ surface. Parameters are as follows: }
{ Spacing: The distance between tick marKs on the axis. }
{ Location: The X-value of the Y-axis. ¥
{ Mador: The number of tick marks to de before drawing a mador tick }
{ mark, If Mador=0,s every fifth tick marKk will be mador. }
{ Madsize: The lendgths in world units, of the mador tick marKks, ¥
{ Minsize: The lendgths in world unitss of the minor tick marKs. }

' real i

SemiMinsize: reali

SemiMadsize: reali

Counter: integers {keers track of when to do mador ticKks}
bedin {bodv of procedure "YaxisCliep"}
SemiMadsize:=Madsize*0,33
SemiMinsize:=Minsize*0,53
Counter:=03 {start with a mador tick}
ClipDraw(LocationClirYminsLocationsClirYmax)s
Ye=RoundZ(ClirYminSpacind*#MadjorsDown)i {round to next lower mador}

146 Listings of Example Programs

while Y<=Clip¥max do bedin
1f Counter=0 then
ClirDrawi(lLocation-SemiMadsizes¥Location+SemiMadsizeY)
else
ClirDraw(Location-SemiMinsizes¥sLocation+SemiMinsize V) s
Counter:=(Counter+l) mod Majors
Y +5pacings

endi {while}

—\/

=1

ends {procedure "Yaxi1sClip"}

traged {REFERFRERIFEFEREE AR AR AL RERL AR AR AR R AERRF AR AR ERRERFERERRERRRER D

procedure Grid(Xspacings¥sracingdyXlocY»¥1locK: reali Hmador:
Kminsizes Yminsize: real)s

¥Ymador: inteders

{ This procedure draws a drid on the plotting surface,» with user-definable 1}
{ minor tick size+ Parameters are as follows: }
{ Kspacind: The distance between tick marKs on the X axis. +
{ Yspacind: The distance between tick marKs on the YV axis. +
{ Kloch: The X-uvalue of the Y-axis. }
{ Y1locK: The Y-value of the X-axis. +
{ K“minsAmax: The left and ridht ends of the X-axiss respectively, +
{ Kmador The number of tick marks to de before drawing a mador tick +
{ Ymador: mark, If Mador=5, every fifth ticKk marK will bhe mador, ¥
{ Kminsize: The lendgths in world unitsy of the X minor tick marks. ¥
{ Yminsize: The lendgths in world unitsy of the Y mivnor tick marKs, ¥
R T Tt =g ¥
uar

W Y reals

HstartyYstart:reals

neemiMinsize: reals

YsemiMinsize: reali

Counter: inteder:
bedin {body of procedure "Grid"}

RsemiMinsize:=Xminsize*Q,5
YesemiMinsizer=Vminsize*0,5
Rstart:=RoundZ2(ClirXminsXsPacind*XmadorsDown)
Ystart:=RoundZ(ClirYmin ¥srPacing*¥YmadorsDown)

}
i
madorl
mador’

next lower
next lower

{round to
{round to

{===== Draw vertical mador ticks
Hi=zXstarty
while X<=ClipXmax do bedin
ClieDraw (X ClipYmin X ClirY¥max) s
Ki=X+Kspacing*Xmadors
end}i
{=====z Draw horizontal madJdor ticks I CEEISIISSSSTSSSSSSSSSSSSSISIIzsZIssZ=azc)
YizV¥starts
while Y<=ClirYmax do begdin

ClipDraw(Clirdmins¥ »ClirXmax¥) i
YizY+Yspacing*Vmadors

[BHEN

ends

Listings of Example Programs

{=z====z Draw vertical minor ticks =Z=zzTzz=z=zZ==S=ZZ==SSSSSSSSSSsZsSssssssssasss=s===s)
Kiz=Xstart}
Counter:=03
while X<=ClirpXmax do bedin
if Counter<{:Q0 then bedin
Yi=Ystarts
while Y<=Clip¥max do bedin
ClipDraw(Xs¥-YSemiMinsizesX»¥+¥SemiMinsize)s
Yi=Y+¥spacingi
endi {while Y<=ClirYmax}
end’ {counters 07}
Counter:=(Counter+l) mod Xmadors
Ri=X+Xspacingi
endi {whilel
{===== Draw horizontal minor ticks ZZEZEZSZZSSECISSSRTSSRSCSSISZISSCSSSSESSSsSEsszz=c}
Yi=¥starti
Counter:=03
while Y<=ClirYmax do bedin
if Counter<{:0 then hbedin
Hi=Wstarti
while X<=ClipXmax do bedin
ClirDraw{X-RXSemiMinsize »¥ +XA+XSemiMinsize YY)
Hi=X+Xspacings
endi {while X<=ClipXmax}
ends {counter<>07}
Counter:=(Counter+l) mod Ymadori
Yi=¥Y+Y¥Yspacings
endi {while}

endi {procedure "Grid"}
$PATEt (AR EREREE R AR R R RN R R R R R R R R RN R R R RN R R RN R R R RRRE N RN RN AR AR NN R RS]
bedin {prodram "AxesGrid"}

drarhics.inits
display_init(CrtAddr ControllordsErrorReturn) s
if ErrorReturn=0 then bedin
=== DO Progra"‘ Setup :::}
Ratio:=511/3893
set_aspect(Ratiosl)}
if Ratiorl then bedin
Yirtdmax:=13
YirtYmax:=1/Ratios
end
else bedin
Yirtimax:=Ratio}
Virt¥max:=13
endj
=== Upper left viewrort SIS ZSZSSTIEITIZSISISSSSSSSSSSIISSSSSISSISSISISISSISScazzal
LeftEdde:=03
RightEdde:=0,48%VirtXmax}
BottomEdde:=0,52*YirtVYmaxs
TorEdde:=VirtYmax3
set_viewport(LeftEddesRightEddesBottomEdde sTorEdde) s
set_window(0,80,0,40)3
Frames
ClipLimit(Q,80,0,40)
KaxisClip(140,45424+1)
YaxisClir(14045,4241) 5

a
1
.
3

147

148 Listings of Example Programs

=== Upper right viewport ===SSC-=-=-=ZS=-Z==ZZSZZCZZISTIZIICIIIZISSISSSISISISISSISIo=
LeftEdde:=0,32%VirtXmaxi
RightEddge:=Virtimax}
BottomEdde:=0,32%VirtYmaxs
TorEdges=VirtYmaxi
set_viewport(LeftEdde RightEdde BottomEdde sTorEddge) i
set_window(0,80,0,40) 3
Frames
ClipLimit(0,BO0440) 3
Grid(5:5,04,034:445140.8)3
==z | gwer left VIPWPOIt =======-----SC oS oo S oIS ISSSSCISISIISSISSISISSIIZISISCSX
LeftEdge:=03
RightEdde:=0,4B*Virtimaxi
BottomEdde:=03
TorEdde:=0.,4B8%VirtYmaxs
set_viewport(LeftEddesRightEddesBottomEddesTorEdde) s
set_window(0,80,0,40) 3
Frames
ClipLimit(080,0,40)3
Grid(24140,0,10410,0,001,0,001)3%
=== |Lower right viewppprt =======S==ss=sc--ss-s-ssssssossssssosszzszszsosssszoons
LeftEdge:=0,52#VirtXmaxi}
RightEddes=UirtXmaxs
BottomEdde:=03
TorEdde:=0,48%VirtYmaxis
set_viewport(LeftEddesRightEdde BottomEdde TorEdde) s
set_window(0,80,0,40)3
Frames
ClipLimit(0,80,0,40);
KaxisClir(1 4045924101
YaxisClip(1403542+1) 3
KaxisClip(1,40434241)3
YaxisClip{(1B0:34241)1
Grid (104104505001 414292) 73
ends {ErrorReturn=07}
grarhics.terms
end, {prodram "AxesGrid"}

Listings of Example Programs 149

BAR_KNOB

$ucsddebud$
prodram Test (Kevboardsoutput)j
import ddl_vars,ddl_tvrpes,dgl_lib,ddl_inaj

type
States= (Ons0ff)3
DrawMode= (DrawsErasesCompsNonDom) 3§

const
FS= chr(28)3
BS= chr(B)i
us= chr(31)3
LF= chr(10)3
CR= chr(13)3
Q= ‘D3
Q1= fq'3
Underline= chr(132)3
Ind_off= chr(128)1
Inu_0On= chr(129)3
MinBarY= 03
MaxBarY= 1003
MinBarX= 1803
MaxBarX= 2204
IncDelta= 0413

var
Error_num: integersi
I+TempInt: inteders
LevelsLastlLevel: reali
Delta: reals
CharWidthsCharHeight: reals
Character: chars
Done: booleani
Kevboard: texti
TempString: Gstring293

L FE LR T Y Ry I Y e e y RS e T TR S R E i I
procedure GraphicsDisplav(State:S5tates {On/0ff});
const

GrarhicsDise= 10305
var

Erroriinteders

SwitchArrav:inteders

Dummy :reals
bedin {rprocedure GrarhicsDisplav}
case State of

On:SwitchArrav:i=13

Off:SwitchArrayv:=03
endi {case State of}
output_esc(GrarhicsDisps1+05witchArray +Dummy»Error) 3
if Error <3 O then

writeln (’Error “sError:lys’ encountered in GraphicsDisplay’)j
endj {procedure GrarhicsDisplav}

150 Listings of Example Programs

$rades
procedure AlrhaDisplav(State:States {0n
const
AlrhaDisp=1031%
var
Error:inteders
SwitchArrav:inteders
Dummysreals
bedin
case State of
On:SwitchArrav:i=1s
Dff:SwitchArray:i=0;3

LR R RRRERFRRE R REREE R IR R RN RRRREERERR R R R RR R R RRE]

JO0FfR)s

{procedure AlrhaDisplav}

in AlphaDiselay)3
{procedure AlrhaDisplav}

endi {case State of}
output_esc{AlrhaDise+1+0ySwitchArray +DummysErrar) 3
if Error <% O then

writeln (’'Error ‘HError:ly’ encountered
end 3
$rade$

hedin

Level:=03

Lastlevels=Levels

dgraphics_inits

displav_init(3+0Error_Num)i

if Error_Num=0 then bedin
AlrhaDisplay (Off) 3
GrarhicsDisplay (On)3
set_aspect(511,389)1
set_window(0,400,-30,120)1
set_color(1)3
CharWidth:=(0,035%400)1
CharHeight:=(0,05%150) 3
set.char.size(CharWidth:
{-~-- 0Outline the Bar
move (MinBarX-0,5sMinBar¥-0.
line{(MinBarX-0,3+MaxBar¥+0,

line(MaxBarX+0.,5MaxBar¥+0,

(
(

CharHeight) 3

line(MaxBarX+0,3yMinBar¥-0.
line(MinBarX-0,5MinBar¥-0,
{---- Label the bar (numeric
for I:=0 to 10 do bedin

abels)

strurite(TempString sl sTemrInt I¥10:3,'-")3

move (179-strlen(TempString)*Charki
dtext (TempString)s
endi {for I:=1 to 10 1}
{---- Label the bar (textual
move (221, BO-CharHeight/2)3
gtext ('-High Normal’)3s
moue (2214 BO-CharHeight/2)3
dtext (‘-Low MNormal ')y
{---- How about some instructions
CharWidthe=(0,02%400)}
CharHeidght:=(0,035%150)3
set_char_size{Charlidth,

labels)

CharHeight)}

moue (0O 5)3
TempString:='Use the Knob to’+CR+LF3
dtext (TempString)i

TempStrind:='Addust the

gtext (TempString)i

LR FRFRERFERRERREERRFRFRFRR R R R RFFAFHERANERRE R R R AR RN R AR * T

{Main Prodram?}

{current heidht of bark
{previogus height of bar}
{initialize the drarhics svstem’
{which output devigce?}
{outPut device 1nitialization
{turn off alpha diselav}
{turn on dgrarhics displav?}
{use whole screen’

{scale the window for the
{color number 1: white}
{char width: 3.5% of screen
{char heidght: 57 of screen
{install character size?}

OK?}

datal

widthy
heidht}

lower left cormerss.?

to upper left corners,.}
to upper ridht COTMner.s}
to lower left cormersss
draw to lower left corner,?

{move to
{vvodraw
{vvedraw
{vvidraw
vand

dth »I#10-0,24#CharHeight);

{char width: 2% of screen width?}
{char height: 3,57 of screen heidht?
{install character sizel}

value, "+CR+LF 3

TempString:=' ‘+CR+LF3
gtext (TempString)i
TempStrind:='SHIFT with the Knob
gtext (TempString)i
TempStrind:='speeds it
gtext (TempString)i
TempString:=""'3
{---- Set a doo0d character size
CharWidthe=(0,035%400)3
CharHeight:=(0,05%150)3
set.char_size(CharWidths CharHeight)}
repeat

read(Keyboard:Character)s

Delta:=03

case Character of

ups ‘+CR+LF

FS: Delta:=IncDeltas
BS: Delta:=-IncDeltas
LF: Delta:=10%IncDeltas
Us: Deltas=-10%#IncDeltai

0,Q1: Done:=TRUES
otherwise
endi {case ord(Character)?}
if Delta*0 then bedin
set.color(l)}
while (Level<lLastlLevel+Delta)
Level:=Level+IncDeltal
move(MinBarXsLevel)s
line(MaxBarXsLevel)i
end {while (Level<lLastLevel) and
end {if (Delta:0) and (Level<100)
else hedin
if (Delta<0) and
set.color(0);
rereat
move(MinBarX, Level)s
line{MaxBarX, Level)i
Leveli=Level-IncDeltas

and

until (Level<=LastlLevel+Delta)
endy {if (Delta<0®) and (Level:»0)}
ends
{---- How about some numbers? ------

set_color(0)j

strurite(TempStringdslsTemrIntLastlevel:3sl)3

(Level:=0,3%IncDelta)

Listings of Example Programs

"+CR+LF 5

{char width: 3.,5% of screen width?}
{char height: 5% of screen heidht}
{install character size}

{det character without echo to screenl}
{start by assuming no motion}

{what’s the character?}

{ridht arrow?}

{left arrow (bacKsrpace)?}

{down arrow?}

{up arrow?}

{or Quit?}

{if none of the above, idnore it}
{Going Ur}

{we want to draw lines}
{Level<MaxBar¥Y-IncDelta) do bedgin

{new tor of bar}

{move to left edde.,..,}
{vivand draw to right eddel}
(Level<MaxBarY)}

{Going Down}t
then bedin
{we want to erase lines}

{move to the left edges, s}
{+vvand draw to the right edgel
{new tor of bar}

or (Level<=MinBarY)

{we want to erase lines}
{convert level to chars?}

move(MinBarX+(MaxBarX-MinBarX)/2-strlen(TempString)*¥CharWidth/2;

MinBarY-Z2%#CharHeight) 3
gtext(TempString);
set.color(l)3

{erase the old number}
{we want to erase lines}

strurite(TempStrind sl +TempIntLevel:3sl)s

move
MinBarY-2%CharHeight) 3
gtext(TempString) s
LastLeveli=Levels
until Dones
GrarhicsDisplay (Off)3
AlrhaDiselay (On):
displav_terms
ends
drarhics.terms
end,

(MinBarX+(MaxBarX-MinBarX)/2-strlen(TemprString)*CharWidth/2,

{write the new}l

{remember the old number}
{repeat until user hits [QI}
{turn off drarhics diseplav}
{turn on alpha diseplav}
{clean up loose ends}

{terminate the grarhics pacKagel
{main Prodram}

151

152 Listings of Example Programs

BAR_KNOB2

$ucsdsdebug$
prodram Test(KevboardsoutrPut)i
import dd9l_vars,dgl_tvpes dgl_libsddl_ings

tyPe
DrawModes= (DrawsErasesCompsNonDom) 3
BarX= arrav[1..3] of inteders
States= (On»0ff) 3
const
FS= chr{(28)3
BS= chr{B)}
us= chr(31)3
LF= chr(10)3
CR= chr(l13)3
Q= Q3
Q1= ‘9’3
Underline= chr(i132)3
ITnd_off= chr(128)3
Inu_0Ons= chr{123)3
MinBar¥s= 03
MaxBar¥s= 1004
MinBarX= BarX[40,1304220,310,40015
MaxBark= BarX[B0170,260,350,44015
IncDelta= 0413
var
Error.num: inteders
I+TempInt: inteders
Level Lastlevel: array [1.,,3) of realj
Bar: inteders:
Delta: reals
CharWidthsCharHeidht: reals
Character: char}
Done: booleans
Kevboard: texts
TempString: Gstring2354

GPaged [FEEEFFERRFRERFERREERRRE RN RRE RN RR R R R AR R R R RRRN R RN R RN H N RN RER]
procedure SetDrawMode(Mode: DrawMode)s

const
OrSelector= 10523 {mremonic better than magdic number?

uvar
IntArray: inteders {\ All this stuff is needed }
RealArray: inteder; { by the DGL Procedure }
Error: inteders { / QUTPUT_ESC,

begin {procedure SetDrawMode?

case Mode of
Draw: IntArray:=03 {\ +
NonDom: IntArravi=13 { A Madic numbers for the H
Erase: IntArray:=2% { / four drawing modes, }
Comps IntArrav:=3 {/ }

endi {case Mode of}
output_esc(OrSelectors1:0sIntArrayRealArravsError)i
end {procedure SetDrawModel}

Listings of Example Programs

$Pagded {EREEREERFRERFRFRRRERRRRERRERRRRRRRRRFRRRRNRRRERRRRRRRR AR RRRRRRRRRRR)
procedure GraphicsDisplav{(State: States {On/0ff})3

const
GraprhicsDises= 103503 {mnemonic better than madic number?
var
Error: inteders {\ All this stuff is needed }
SwitchArray: inteders { » by the DGL Pprocedure }
Dummy : reali { / QUTPUT_ESC, ¥
begin {procedure GrarhicsDisprlav}
case State of
On: SwitchArray:=11 {i=zony andsee}
Off: SwitchArrav:i=03 {0=0ff,}

endis {case State of}
putput_esc(GrarhicsDispsl+0+8witchArray sDummy sError)i
if Error<{:0 then
writeln{’Error ‘sError:ls’ encountered in GrarhicsDisplav’)i
endi {procedure GrarhicsDisrlav}
SPagded {FFEFERERERERRNRN R RRFERERRERERRRRR RN AR NN R RN R RN RN KRR RRRRRRRERERRD
procedure AlphaDisplav(State: States {On/0ff})3

const
AlrhaDisp= 10313 {mremonic better than madic number’}
uyar
Error: inteders {\ All this stuff is needed %
SwitchArray: integers { by the DGL procedure }
Dummy : reals { / OUTPUT-ESC, }
bedin {procedure AlrhaDisrlav}
case State of
Onz SwitchArrar:=113 {1=ons andsss}
Off: SwitchArrar:=03 {O=0ff,}

endi {case State of?}
gutput_esc(AlrhaDise+1+0sSwitchArray »DummysError) s
if Error<:0 then
writeln(‘Error ‘sError:ls’ encountered in AlphaDisplay’)i
endi {procedure AlrhaDisrlav}
FPades {HFERERRRRREFRRRERRRRERERE R R RN RN RN RN RRRRRRRRRRRRRRRERR RN RRRR]
procedure ClearInd(Bar: inteder)s
bedin {procedure ClearInd}
SetDrawMode(Erase)
move{MinBarX[Barl MinBar¥Y-1,3%CharHeidht)}
line{MaxBar¥[Barl:MinBar¥-1,3*%CharHeidght)
end?’ {procedure ClearInd}
Gpaged [EEFFRFRERRREFRRRERERERRRERERRRRRRRRF RN R AR RRRNERRERR AR RR AR RRRRR])
procedure SetInd(Bar: inteder)i
bedin {procedure SetlInd }
SetDrawMode(Draw)s
move(MinBarX[Barl MinBarY-1,3%CharHeight)3
line(MaxBar¥[Barl:MinBar¥-1.3%CharHeidht)3
ends {procedure SetInd }

153

154 Listings of Example Programs

$rades
procedure UpdateValue(Bar:inteder)
var
LastCharWidthsLastCharHeigdht:
bedin
LastCharWidth:=CharWidth}
LastCharHeight:=CharHeidght}
CharWidth:=(0,025%512)3
CharHeight:=(0,045%150) 1
set_char_size{(CharWidthsCharHeidht)3
{---- Erase the old
SetDrawMode(Erase) s
TempStrings=""3

reals

strurite(TempStringsisTempIntsLastlevel[Barl:Ssl)}
move (MinBarX[Barl+(MaxBarX[Barl-MinBarX[Barl)/2-

S22 TR I 222 T S R R R R R L R R L R R SR TSR T R R TR LR R R

{procedure Urdatelalue »

{store old character width}

{store old character heidht}

{mew char width: 2,57 of screen width}
frew char width: 2,5% of screen height)
{install the character sizel}

{draw with black lines?)
{rull ouwt any old valuel
{convert
{move to

to stringl
right place?’

strien(TempString)*CharWidth/2»MinBarY-2,5%CharHeight);

gtext(TempString) i
{---- Write the rnew
SetDrawMode(Draw) 3
TempString:=""'1

strurite(TemprStrindslsTempIntsLevellBarl:Sel)s
move (MinBarX[Barl+(MaxBarX[Barl-MinBarX[Barl)/2-

{label the strind’}

_____________________________________ }
{draw with white lines}
{rull out any old valuel
{convert to strind}
{move to ridht place}’

strlen{TempString)*CharWidth/2MinBarY-2,5%CharHeight) s

dgtext(TempString):
{---- Reinstate the old character size
CharWidth:=LastCharWidths
CharHeight:=LastCharHeidht}
set_char_size(CharWidthsCharHeidht)3
endi {procedure UrdateYalue }
$radest
bedin
dgraphics_init}
display_init(340Error_Num)3
if Error_Num=0 then bedin
AlerhaDisPplav (Off)}
GrarhicsDisrlav(0On)
set_aspect(5114+389) 3
set window(0,511+-350,110)3
set_color(i)i
SetDrawMode(Draw)
CharWidth:=(0,020%400) 3
CharHeight:=(0,035%150)3
set_char_size(CharWidthsCharHeidght)3
{---- Make the Bars

{labkel the string}

{restore 0ld character width}
{restore old character heidht}
{install old character size}

{REEEEREREERREE R R R R R R ERRERE R RN ERERERFAEFERRAR X R RERFERERXRARR)

{Main Prodram}

{initialize the drarhics svstem’}
{which outrput device?}

{output devige initialization OK?}
{turn the alpha diseplay off}

{turn the dgrarhics diselay on}
{use the whole screen}
{scale the window for the
{draw with white?l
{dominant drawing model}
{char width: 2% of screen width}
{char heidht: 3,5% of screen heidht}
{install the character size}

data)

Listings of Example Programs

for Bari=1 to 5 do begin

{---- Initialize the leuels
LevellBarl:=03

LastLevellBarl:=LeuvellBarls
{---- Dutline the Bar
move (MinBarX{Barl-1 MinBarY-(160/389));
line(MinBarX[Barl-1 MaxBarY+(160/389))3
live(MaxBarX[Barl+!l MaxBarY+(1G60/3B9));
line(MaxBarX[Barl+!l MinBarY-(160/389))3
line(MinBarX[Barl-1MinBarY-(160/389))3

{all bars at level zero}

{old values tool}

lower left cormersss}
to uprrer left. .}

to upper ridht,..}

to lower right...}
draw to lower left.,}

{move to
{+svsdraw
{vevdraw
{yerdraw
{+veand

{---- Label the bar
TempStrinds="'"}
strurite(TempStrindslsTempInts'Bar '/

move(MinBarX[Barl+(MaxBarX[{Barl-MinBarX[Barl)/2-

strlen(TempString)*CharWidth/2yMin
dtext(TemPString)}
{---- Put numbers alongside the bars
for I:=0 to 10 do bedin
TempStrinds=""'3%

strurite(TempStrindslsTenrInt +I%10:3,7'-7)3

move(MinBarX[Barl-strlen{TempStrin
I*¥10-0,24%CharHeight) s}
gtext(TempString) i
endi {for I:=1 to 10 }

UpdateWalue(Bar)s
ends {for}
{---- How about some instructions ----

CharWidth:=(0,02%511)3
CharHeight:=(0,035%160)3
set.char.size(CharWidth CharHeidght)3
move{(Q,-30)3
TempString:='Use Number Kevs to select
dtext(TempString) s
TempString:=''+CR+LF}
dtext(TempString) 3
TempString:='Use the Knobk
dgtext(TempStringd) s
TempString:='SHIFT speeds up the Knob,
dgtext{TempString)}J
{---- Start the interactivity
Bar:=3%
SetInd(Bar)j
rerpeat
read(KevyboardsCharacter) s
Delta:=01
case Character of

to addust th

FS: Delta:=IncDeltas

BS: Delta:=-IncDeltas’
LF: Delta:=10%IncDeltas
Us: Delta:r=-10%IncDeltas
B:Q01: Done:=trues

‘17¢4'3': bedin
ClearInd(Bar)3
Bar:=ord(Character)-ord(‘0");
SetInd(Bar)s
end
otherwise
endi {case’}

{null out anvy old value}
1Barsl)s {convert
{move to
Bar¥-1.25*%CharHeight)s
{label the text}

to stringl}
ridght place’}

old valuel}
{convert
{moue to

{null out anv
to stringd}

g)*CharWidth, right place’}

{label the text}

{modify the bar}

{char width: 2% of screen width?}
{char height: 3,5% of screen heidht?}
{install character sizel}

a bar. +CR+LF3

e value, '+CR+LF}

‘+CR+LF;

{which bar active at first?}
{tell the Pprodram so}

{read character with no echo to screen}
{assume no motion until told otherwise?

{right arrow?}

{left arrow (or backspace)?}
{down arrow?}

{up arrow?}

{or Quit?}

{deactivate old bar}
{determine new bar’s number}

{activate new har}

{if vnone of the aboves do vnothing}

155

156 Listings of Example Programs

if(Deltas0)then bedin {Going Ur}
SetDrawMode(Draw) {draw with white lines}
while (Levell[BarliLastLevel[Barl+Delta)
and (LevellBarl<MaxBarV-IncDelta)do bedin
LevellBarl:=Level[Barl+IncDeltas {calculate new levell}
move (MinBar¥[Barls LevellBarl)s {move to the left end..s}
line(MaxBar¥[BarlsLevellBarl)s {.,,.and draw to the ridht eddel
end {while}

end {if}
else bedin {delta<O}
if (Delta<0) and (LevellBarl:=0,5%IncDelta) then bedin {Going Down?}
SetDrawMode(Erase) i {draw with black lines}
repeat
move(MinBarX[Barl LevellBarl)i {move to left edde.,.,?}
line(MaxBar¥[BarlsLevellBarl)s {yvvand draw to ridht eddel}
LevellBarl:=LevellBarl-IncDeltas {decrement levell}
until (Level[Barli=LastlLevellBarl+Delta) or (LevellBarl<=MinBar¥)
endy {1f}
endy d{elsel}
{---- How about some numbers? ----cmmmomomemmm e +
UpdateYalue(Bar): {chande the bar’s numeric label}
LastlLevellBarl:=LevellBarl; R {remember the current valuel}
until Doves {pressed [Q] vet?}
GrarhicsDisplav(Off)3 {turn off grarhics displav}?
AlrphaDisplay (On) 3 {turn on alerha displav}
diseplav_terms {clean up loose ends}
ends
drarhics_terms {termivate the drarhics svstem?}

end, {Main Prodram}

CharCell

prodram CharCell(outrPut)s
import d9l_libs ddl_ings

const
Crt= 31
Control= 03
tvre
LordTrpes= 1..93%
8tr2535= string[25313
var
Error: inteders
Iy Xy ¥ inteders
$rades
bedin

dgrarhics.inity
display_init{(CrtsControl+Error)i
if Error=0 then bedin
set_aspect{311,+389)1
move{-1s-1)3% line(-1,1)% line(il:1)1
set window(-2+38+-7,3422,5)13
set-char_size(1:2)3
move(ls21)3
dtext{’Size of Character in Character
for X:=0 to 36 do bedin
for ¥:=0 to 15 do bedin
move (A-0.1sv+0,1)3
line (X+0,1,¥-0,1)3
move (K+0,14Y+0,1) 3
Tine(X-0,1,¥Y-0,1)3
endi {for v}
endi {for x}
for I:=0 to 3
move(I*9,0)3
ends
set_char_size(9,15)1
move(l4)}
dtext(/Gbyi’)3
endi {Error=07}
grarhics.terms
end. {Prodram

do bedin
line(I*9415)1

“CharCell"}

line(I*9+9,15)3

Listings of Example Programs

{program name same as file namel
{access the necessary Procedures}

{device address of drarhics raster}
{device control wordi ignored for CRT?
{the valid values to pass the "Lorg"}
{for the procedure "Glabel"?}

{displav_init return variablei O = ok}
{loop control variables?

{RERERERRERFRREEEE R R AR RRREERRNREERERRERRERRRRERERERR RN R AR RRAR]

{bodv of prodram "CharCell"}
{initialize drarhics librarv}
{initialize CRT}
{if no error occurred.ss}
{use the whole screen}’
line(1s-1)3% line(-1s-1)1
{define appropriate window}
{\ }
{ * Do main label, ¥
ell Yy { / }
\
\
\ Draw the four 9xi5
\ character cells., Make
/ a frame around each:
/ and an X at every
/ POint.
{7/ }
{draw a frame around each char cell}
line(I*9+9,0)% line(I*9,0)3

e T e N e T e B e e B W |
B e e

{big characters}

{90 to starting Position}
{label some characters}

{end of conditional code}
{terminate drarhics librarv}
{end of Prodgraml

157

158 Listings of Example Programs

COLOR

$ucsdsdebugs
prodram Test(KevboardroutrPut)s
import dgl_varsyddgl_tvressdgl_libsddl_prolvyddl_ingi

tvpe
Colors= (Reds¥ellowsGreensCransBlueMadentasWhitesBlack) s
Modesg= (HuesSat +LumsTablesCopry1sCopvi)
EntryRande= -1 161
FurnnyArrays= array [Colors] of chari {arravy for alrha color}
const
FS= chr(28)1 {ridght arrow?}
BS= chr(B)i {left arrow or backspacel
ug= chr(31)3 {up arrow?
LF= chr(10)3 {down arrow}
CR= chr(i3)s {carriade return}
C= chs { A ¥
Cl= 't} { A\ ¥
E= "E" { \ b
El= e’} { \ +
H= "H 3 { \ +
Hl= "h'i { \ These are the valid ¥
L= L { / USETr TESPONISES. ¥
Ll= 173 { / ¥
Q= ‘93 { / +
Q1= g3 { / ¥
S= 573 { 7/ +
Sl= - {7/ +
Displav_Cont= 10501 {mnemonic better than madic number’
Underline= chr(132)3 {alpha enhancement: underlining?
Ind_off= chr(128)3 {turn enhancements off}
Inv_On= chr(l129)1 {alpha enhancement: inverse video}
FurnnvyChar= FunnvArravlchr(138)»chr(137) {\ Arrav for +

(

(136) schr(140) { \ holding the ¥
chr{1d42)ychr(143) { / alpha-color }

(141)ychr(138)1% {/ controllers }

Listings of Example Programs

FPaged LR EEERE R R R R R R R R R R R R RN R AR AR R R R RN RN R AR RN RN RN R RN RN
vuar

Error.nums inteders {return variable}

IyTempInt: inteders {temporary variables}

arrav[1.,,5]1 of dshortinti
{locations of Points?}
{same pointsy but filled?}

OpArrav:
KarravsYarrays
Yfill.arrav:
Delta:

arrav[1,,3] of real?
reals

HueVal: array[0,,151 of reali {\ For each of the }
SatVal: arrav[0,,15] of reals { \ sixteen Pens, we }
LumWal: array[0,,15]1 of reall { \ need to Know the }
GreenVal: arravy[0,,13]1 of reali { / HSL values as ¥
BlueVYal: arrav{0,,+13] of reals { / well as the RGB }
RedVal: arrav[0,,15] of real} {7/ values., ¥
Hue_ind: chars {\ }
Sat._ind: chari { Various indicators, }
Lum_ind: chars {7/ }
Tab_ind: chars {and another?}

Character: chari {utility variable?}

Done: booleani {are we throudgh vet?}

Kevboards texts {non-echoing inPut}

TempString: Gstring2533 {temporary holding rplace for text}
ModeLastMode: Modes s

EntryRande

CursorColor: 3
EntryRandes
H

Copy.Source:
LastTableEntry:
TableEntry:

EntryRande
EntryRandes

K.Loc: array[0.+,13] of inteder:
Y_Loc: arrav[0,+15]1 of inteders
Int_a: inteders

Real_ A: reals

RedBack:GreenBack,BlueBackK:

reals

LabelColor:

char}

BackSum»0ldBackSum: 04714
$PATEE L EEEEEEEREERERRERFRRF RN R R R AR RN R ERE AR RN FRRRR AR AR ERERRERRR)
procedure MenuLine?
bedin {procedure MenuLinel
writeln(LabelColor)i {write in appropriate color}
gotoxy(0,0)3 {d0 to urper left corner of the screen}
write(‘Color Selector:’sUnderlives’'H’ sInd_offs’ues’)s
write(Underlines 'S’ yInd_offs’aturations’)s
write(Underliney 'L/ yInd_offs’uminosity ')}
write(‘tabkle ‘sUnderline»’E/svIndooffs'ntrys’)i
write(Underlines'C/yInd.offs’opy colors’)s
writeln(Underlinesy’Q/yInd_offuit’)i
endi {procedure MenulLine}

159

160 Listings of Example Programs

EPATRT (R ERE AR EEERFRRERERREFERRERERRR IR RF R EFRFNEFFRNFRRRAAE R R R R RRR }
procedure DisplavStuffi

hedin {procedure DisplavStuff}

writeln(LabtelColor)si {write in appropriate color}

case Mode of {which value are we tweaking?}
Hue: Hue_Indi=Inu_0Oni {\ }
Sat: Sat_Ind:=Inv_0Onj { N\ Turn on the displav }
Lums Lum.Inds=Inu_0On} { * enhancement for the ¥
Table: Tab_Ind:=Inuv_0ns { / appropriate indicator, b
CopylsCopvZ2: {No Indicators onl}s {7 +

endi {casel

dotoxy(0,3)1 {fourth rows first column}

writeln(Hue_inds’ Hue ‘sInd.off)j

writeln(HueYallTableEntry1:5:2)3

writeln(Sat-ind:’ Sat ‘sInd_off)i

writeln(SatVallTableEntry1:5:2)3

writeln(Lum_inds’ Lum “s»Ind_off)3

writeln(LumWallTableEntry]:5:2)3

writeln(Tab_inds’ Evtry “sInd_off)3

writeln(TableEntry:3)3

gotoxy (0,20)3 {twenty-first rows first column}

Hue_inds=chr(128) 3 {\ }

Sat_ind:=chr(128)3 { A\ Turn all diselavy ¥

Lum_indz=chr(128)} { / enhancements off ¥

Tab_ind:=chr(128)1 {7/ ¥

endi’ {procedure DisplavStuff}
SPaged [HFEEREEEFERERRERRERERE IR R AR AR AR R RN R AR AR R AR AR AR AR AR AR F AR]
procedure UpdateCursor(TableEntrv:inteder)s

L o B T ¥
procedure DrawCursor(TableEntryiinteder)s
begin {procedure DrawCursor}
Rarray[1l:=X_Loc[TableEntrv1+0,13 {\ }
Karray[21:=X_Loc[TableEntr»1+0,53 { A\ }
Karray[3l:=X_Loc[TableEntrvy1+0,93 { \ }
Karray[41:=X_Locl[TableEntry1+0,13 { \ Define the triangular ¥
Yarrav[1J:=Y_Loc[TableEntry1-0,09% { / cursor, }
Yarray[21:=Y_LoclTableEntry1-0,013 { / ¥
Yarray[31:=Y_LoclTableEntrvy1-0,093 { / }
Yarrav[dl:=Y_Loc[TableEntrv1-0,08;3 { / }
set_Pdn.style(l3)3 {entry #13 from the polvdon tablel
polvdon_deu_der(dyXarrav ¥arrayOrArray) i {draw the cursor}?
ends {procedure DrawCursor}
S T }
bedin {procedure UpdateCursor}
if LastTableEntrv<>TableEntry then bedin {any change?}
set_Pdn_color(0)} {choose fill color of backdround}
DrawCursor(LastTableEntry) {draw in background color (erase)}
ends {if}
set_pdn.color(CursorColor)s {select Ppolvdon color?
DrawCursor(TableEntry)? {draw the new cursor}
LastTableEntry:=TableEntry {remember the new cursor position}

endi {procedure UrpdateCursor}

Listings of Example Programs 161

FPAgEd (R EEERRERERRRE RN RN RN RN FRF R AR AR AR RE RN AR AR AR RN RERERRRRRN)

bedin

Hue_ind:=chr(128)3
Sat_indi=chr(12B)}
Lum_oindi=chr(128)3
Tab_indi=chr(128)3
TableEntryi=03
LastTableEntryi=03
Mode:=Tables

CursorColor:=13
LabelColor:=FunnyCharlBlackls

grarhics_init}

{Main Prodram}

{\

{ N All highlights initially
{ 7/ off.

{7/

{currently indicated entrv}
{previously indicated entrv}
{selection mode first}

{make sure the cursor is visihble?
{labels contrast with bacKkdround}

NN N

{initialize the drarhics svstem}

{which outrput device?}
{successfully initialized}
{define the character sizel}
{select the Polvdon stvlel

{use the whole screen’}

{scale the window for the datal}

displav_init (340 sError_Num)j

if Error.Num=0 then bedin
set_char_size(0,175,0,13)1
set_pPgn.stvle(ld)i
set.aspect{(511,389);
set_window(-1,1+84-0,742,2)1%

{---- 8et up color sv¥stem and set bacKkdround color -weoeeoommmmonoaoaon }
set.color_model(2)3 {HSL}
HueVallTableEntryl:i=01 { \ Current TableEntrv: 0,

}
SatVallTableEntryle=03 { # Current entrv’s color: ¥
LumWallTableEntryli=0,63 { / BO% dgrav, ¥
set.color_table(TabkleEntry {\ }
HueVallTableEntryl, { \ Install the currently- }
SatVallTableEntry]1, { / defined color, }
LumVallTableEntry1)s { / }

{---- Read the colors from the COlOP MAP =mm--cmm oo e oo oo H
for I:=0 to 15 do ina_color-table(I HueVallIl,SatVallIll LumWallIl)}

{---- Initialize arravs for POLYEON ~eemo oo e e e e m e e - }
OpArravil1l:=23 {2: First vertex of a polvdon}

for I:=2 to 5 do OpArrav[Ile=1;} {1: Draw from the last vertex to this}
{---- Set upr arravs for the lOWET TOW mememmm oo Lo }
Yarray[1l:=0,13 {\ b
Yarrav[21:=0.13 { \ Define the outline of }
Yarrav[31:=0.9; { * the talls unfilled ¥
Yarray[41:=0,93 { / rectandle. +
Yarrav[S51e=0.13 {7/ }
Yfill_arrav:=Yarravi {\ Define the outline of }
Yfill_arrav[31:=0,53% { * the shorty filled }
¥Yfill_arrav[d41:=0,53 {7/ rectandle, }

{---- Draw the lOWEBT TOW = --m o oo oo e }
for I:=0 to 7 do bedin

Xarrav[1l:=13 {\ }
Harray[21:=1+0,93 { \ Define the X positions ¥
Aarray[31:=1+0,93 { *» for this particular }
Harrav[4ls=13 { / rectandle. }
Rarrav[51:=11 {7/ }

strwrite(TempStrind sl sTempInt 1:2)3% {convert to a strind}
set_color(1l)i {set the color for text}
move(I+0,5-0,07540)3 {move to Just right of bottom center?
dtext(TempString) {label the table entrvy number?
set.rpdn.color(I)} {set the color for Polvdon fills}
set.color(I)} {set the color for lines}
polvline(S,XarravsYarray)s {draw the tall unfilled rectandgle}
polvdon_dev_der(SsXarravs¥fill_arrav:0pPArrav)i {draw and fill shortie}
K-boclIds=round(Xarravy[11)3 {store X locations}
¥Y_LoclIJ:=round(Yarrav[11)} {store Y locations}

ends {for I:=0 to 13}

162 Listings of Example Programs

[¥
A

{---- Set up the arravs for the upprer
Yarray[1l:=1.13

Yarray[21:=1.13

Yarrav[{31:=1.,93

Yarrav[d41:=1.,93

Yarrav[8li=1,13

¥fill_arravi=Yarravi
¥fill_arrav[31:=1,5}
¥Yfill_arrav[dl:i=1,33

{---- Draw the WPPET TOW === === m o o o o e e e o o e oo }
for I1:=0 to 7 do bedin

Redefine ¥ wvalues only,

Redefine ¥ values onlv.

B T ans B ane T aee D ane T B ate B e e |
~

Karravy[1l:=13 {\ T
Harrav[21:=1+40,93 { \ Define the X positions ¥
Karray[31:=1+0,93 { » for this particular }
Harrav[d41:=1}% { / rectandle. }
Karray[5l:=13% £/ }
strwrite(TempStrind sl sTempInt yI+8B:12) 3 {convert to a string?l
set_colar(i)} {set the color for text}
moue(I+0,5-0,0754+1)1 {move to Just ridht of bottom center?
dtext(TemPString)s {labkel the table entry number}
set_pdn_color(I+B)3 {set the color for polvdgon fills}
set_color(I+8)1 {set the color for lines?
polvline(SsXarravsYarrav)s {draw the tall unfilled rectandle?
polvdon_deuv_dep(SsX¥arrav,¥fill_arravs0rPArray)i {draw and fill shortie?}
W_Loc[I+B8l:=round(Xarrav[11)} {store X locations?
Y_Loc[I+8):=round(Yarrav[11)3 {store ¥ locations}
ends {for I:=0 to 13}
{---- Start interactivity -----m-mrmoomomunnnn B e R ¥
Mewulines {write the menul
UrpdateCursor(TableEntry) i {initial cursor?
DisplavStuffs {initial readouts?
Done:=falses {not done vet}
repeat {this starts the actual color selector}
read(kevboardsCharacter) i {det a charactersno echo?}
Delta:=0}% {start by assuming zerol
case Character of {analvze the character?}
FS: Delta:=0.,013 {\ }
BS: Delta:=-0,011% { \ Cursor-control }
LF: Delta:=0.13% { / characters ¥
US: Deltar=-0,13 {7/ ¥
HyHl: Mode:=Hues {Hue-chanding mode}
LsL1l: Mode:=Lumsi {Luminosity-chandind mode?}
Q:Q1: Done:=trues’ {Quit the Progdram}
§4681: Mode:=5ati {Saturation-chandingd mode?}
E+El: Mode:=Table: {Entry-chanding mode}
C+Cl: bedin
if Mode=Copvyl then bedin {Have sources will corv.}

Copvy_Source:=TabkleEntryi {Put it where?}
CursorColor:=Copy_Sources
UpdateCursor(TableEntry)3 {note current entrv?
gotoxy (02101 {twentv-second row, first column?
Wwrite(‘Use Krnob to select location to ‘)3
write{‘copy color tosthen press’);
writelw(’ C’)3
Mode:=Copv2 {do second section next timel
end

Listings of Example Programs

else bedgin
if Mode=CopPv2 then bedin A{Copy color to}

dgotoxy (0s21)3 {this location}
writeln(strrpt{(’ 479))1 {"erase" old text}
ina.color.table(CopPv_Source: { \ Get the }
HueWallTableEntrv1, { \ HSL wvalues ¥
SatVallTableEntrvy1, { / from the }
LumYallTableEntry1)i { / table, }
CursorColor:=13 {reinitialize cursor color}
UrdateCursor(TableEntry)i {indicate new cursor position}
Mode:=LastMode {third section next timel}
end
else bedin {Initiate copy mode}

LastModes=Mode}
Copv_Source:=TableEntry3
gotoxy(0:21)1
write('Use Knobk to select color ‘)3
write(’to be copiedsthen Press’)j
writeln(’ C")3 '
Mode:=Coryl
endi
ends
ends
otherwise
endi {casel}
{---- use delta created above to modify the Proper value ---c-eommomnanaan ¥
case Mode of {what am I doing?}
Hue: bedin :
HueYallTableEntryli=HueYallTableEntryI+Deltas {addust it}
if HueVallTableEntry1:! then HueYallTableEntryl:=03 {Keer itvss}
if HueWVallTableEntry1<0 then HueVallTableEntryJl:=13 {vevin limits)
ends
Sat: bedin
SatVallTableEntryl:=SatVallTableEntry]+Deltas {addust it}
if SatVallTableEntry1>1 then SatVallTableEvntryl:=1 {keer itss4}
if SatVallTableEntry1<0 then SatVallTableEvntry1:=0 {ooain limits)
endi
Lum: bedin
LumVallTableEntryle=LumWallTableEntryI+Deltas {addust it}
if LumVallTableEntry1:1 then LumWallTableEntrvle=13 {Keerp itsvs}
if LumYallTableEntr»3<0 then LumVWallTableEntr»1:=03 {evvin limits?
endi
TablesCorv1,CorPv2: bedin
if Delta<>0 then bedin

if Delta*0 then TableEntry:=TableEntry+1 { \ AdJjust ¥
else TableEntry:i=TableEntry-13 { / the value 1}
if TableEntry>15 then TableEntry:=133 { \ Keer it }
if TableEntry<0 then TableEntry:=03 {7/ in limits 1}
UpdateCursor(TableEntry)3 {indicate new entry}
ends
ends

endi {casel}

163

164 Listings of Example Programs

set_color_table(TableEntry . {\ H
HueUallTableEntry 1, { \ Modify the ¥
SatVallTableEntry], { / color mar, ¥
LumVallTableEntry1)s {7/ }

if TableEntry=0 then bedin {Backdround color?

set_color_model(1): {RGB?}
ing_color_.table(0,RedBackGreenBack BlueBacKk)} {det RGB values}
BackSum:=03 { \ Calculate the b
if RedBack<0.3 then BackSum:=43 { \ backdround color }
if GreenBack<0.5 then BackSum:=BackSum+Z3 { / in order to makKe +
if BlueBack<0.,5 then BackSum:s=BackSum+1} { / contrasting text, }
if OldBackSum+ >BackSum then bedin {Color chandel
case BackSum of
Or LabelColor:=FunnyCharlBlackls {\ }
1+ LabelColor:=FunnyCharlBluels { A\ ¥
2: LabelColor:=FunnyCharlGreenls { \ Translate the ¥
3: LabelColors=FunnvCharlCyranli { \ RGB bacKdround ¥
4: LabelColor:=FunnvCharlRed]} { / sum to a +
5: LabelColors=FunnvChar{Madentals { / complementarv +
B: LabelColor:=FunnvyCharlYellowls: { / text color, }
7: LabelColor:=FunnvCharlWhitels {7 }
endi {case BacKsSum of}
Menulines {Pprint the menu linel
OldBackSum:=BackSums} {store for future comparisons?’
set_color_table(lsl-RedBack, { \ MaKe ren one ¥
1-GreenBack { » complementary: ¥
1-BlueBack) i { / too, +
endy {if}
set_color_model(2)3 {HSL?}

endi {if TableEntry=0}

DisplavStuffi {update alepha information?
until Dones {until unser pPushes [Q1}
writeln{(FurnnvCharlGreenl chr(128))3 {restore text screen to normall}
{---~ Rerort all this d00d stUff —ccmmmmm i e }

Int_A:=03
sutput_esc{Displav_.Contsl+0yInt_AsReal AsError_Num)i
set_color_model(1)} {RGB?}

for I:=0 to 15 do ina_color.table(l.,RedVallld, {\ Get the RGB 1}
GreenWalllly { » definitiaon ¥
BlueWallll)s { / of the color }
writeln{'Takle’)}
write('Index Hue Sat Lum’)i
Wwriteln(’ Red Green Blue’)s
for IT:=0 to 15 do bedin { A\ }
write(Is3,’ N { A }
write{HueVallIl:3:2,' ‘i { \ Write the color 1}
write{SatVallll:3:2y’ i { \ map entries as 1}
write(LumallIls3:2,y’)i { * both HSL and }
write(RedVallIl:3:2y')i { / RGB numbers, ¥
write(GreenVallIl:3:2y/)i { / }
writeln(BlueValllIl:3:2)3 { 7/ }
ends {7/ ¥
display_terms {deactivate the diseplav}
ends
drarhics.terms {termivate the drarhics svstem}

end. {Main Prodram}

Listings of Example Programs

CsizeProg

prodgram CsizeProg(output) i

import dgl_lib,y ddl_ing3 {det drarhics routines?

const
Crt= 31 {address of internal CRT}
Control= 03 {device controls O for CRT}
var
Error: intedersi {variable for initialization outcomel
Iy J: intedersi {utility variables?}
Strnd: stringl1013 {temporary holding rplace for strings?}
$include ‘DGLPRG:ConuVtoW’s {virtual-to-world conversion}
SPaged (R EEREEREE R R RN ER R R AR RN R RN ER R R R RN R R RN R R AR RN NN FE RN R RN R AR RRRNR)

procedure CharSize(Height, AspectRatio: real)s

This procedure defines character cell size and the Puts the Width and
Height values into global variables for later use. The arduments Passed
in are the height of the character cell in VIRTUAL coordinates: and the
aspect ratio of the character cells The values for the window limits
mavy be anvthingi they are taken into account and do not affect the size
of the characterss since thevy are defined in virtual coordinates, This
procedurey alongd with Lorg and Ldirs define global variables for use by
Glabel,

e e
e e e e e o o

var
Width:
KOy YOu
Kl Y1
bedgin
ConvertVirtualToWorld(0,04X04Y0)
ConvertVirtualToWorld (i1 sX1y¥1)3
Height:=Height*(Y1-Y0)3

reals
reals
reals

Width:=Heidht*AspectRatio® (X1-X0)/(¥1-Y0)3

set_char.size(WidthsHeight)}
ends
$pades
begdin
drarhics_inits
displav_init(CrtsControlsError)s
if Error=0 then hedin
set_aspect(3511,389)3
set_window(14+24100,0)3
for I:=1 to 6 do begin
CharSize(I*I*0,01,0,6)1
move (1l I*I*xI*0,4+1)3
strurite(Strng sl sdI%#1:0)3
dtext(Strng+/7)3
endi {for i}
endd {Error=07}
ararhics.terms
end,

{temporary spot for width}

{040 (uvirtual) in world}

{11 (virtual) in world}

{body of procedure "CharSize"}

{convert 00 in virtual to worldl}
{convert 1+1 in wvirtual to worldl}
{convert heidht in virtual to world}
{convert width in virtual to world?}
{invoke the Parameters})

{procedure "CharSize"}

LR RREEEERRREE R RN R AR RN R RN EERRRRFRRRAF LR R RERR R R AR RN RRXT)

{bodv of Pprogram "CsizeProg"}
{initialize the drarhics svstem}
{which output device?}

{outeput device initialization OK7}
{use the whole screen?’

{scale the window for the data}
{six different character sizes}
{install character size}

{move to a arpropriate place}
{convert number to stringl
{label the string}

{terminate the drarhics packagel}
{prodram "CsizeProg"}

165

166 Listings of Example Programs

DataPoint

Gpaged [RFERFERFEFFREFRRFRRRE R R R RN R AR R R RN FRRR RN R R RR R RE R R RN RN RN R}
furnction DataPoint(I: inteder): reals {function that returns the y-values?

S b }
{ This function returns one of the one hundred values in the structured }
{ constant "Voltades" every time it is called, This function is called by 1}
{ the "Prodressive Example" prodrams in the draphics technigues charters. }
e i ¥
type

YoltsTyre= array [1,,1001 of reals
const

Yoltagdes= YoltsTyrel0,1610y 0,1625y 0,1625, 00,1628y 00,1636

0,1631s 01627 0,16808 00,1610 0.,160G,
0,1607 0,1617 00,1614y 0.16E26s 0.,1634,
0,1640, 00,1656, 0,1B660 0,1844 0,1631 .
0,163%, 0,164t 00,1828, 0.1619, 0,1630,
0,1624 0,1627y 0,1644, 0.1644, 0.1637,
0,1660 0,1670, 0.,1672y 0.1666, 0.1638,
0,1662y 00,1646+ 0.1633, 00,1634, 0.1636
0,1645y 00,1652y 00,1656+ 0,1677 0,1689,
0,1680, 0,1696, 0,1680, 0.1674y 0.1677,
0,1669, 0,1655, 0.1665+ 0.16B2, 0.1667,
00,1668 00,1681, 0,1G88s 0,1687, 0.,1707,
0,1716y 04,1716+ 0,1694, 0.,1698 0.,1683,
00,1683 00,1671, 0.,1681+ 00,1683+ 0,1684,
0,1681, 0,1698, 0,1705, 0.1723y 0.,1730,
0,1734y 04,1714y 00,1722y 00,1716 0,1696,
0,1702y 0,1699, 0,1684 00,1706, 0,1696
00,1715y 00,1730, 04,1737y 00,1739, 00,1731,
0,1732y 0,1747 0.1729y 0,1717y 0.1710,
0,17074 04,1706+ 0,1708y 00,1713y 0,172013

bedin {body of function "DataPoint"}
DataPoint:=Voltades[I]} {assign it to the function namel
ends {furmction "DataPoint"} {return?}
DrawMdPrg
program DrawMdPrd(outrput)i {prodram name same as file namel
import degl_libi {access the necessary procedurest
const
Palvdons= 1003 {how many polvdons?}
Sides= 33 {how many sides ariece?}
crt= 33 {device address of drarhics raster?
control= 03 {device control wordi idgnored for CRT}
type
short_int= -32768..327673 {16-bit inteder?}
DrawingModeTvyre= (Domivant +ErasesComplement) s
DisplavStates=(0ff0n)3
var
W array [0,+Polvdons-1+1,.5ides] of short_inti
Y array [0O.,Polvdons-1+1..,8ides] of short_inti
Dxs Dy array [1..5ides] of short_ints
Polvy Side: short_ints {loor control variables?
DrawMode: DrawingModeTyrel
Temp: short.ints {temporary holding area?}
New:Previous: short_inti {for efficient use of arravst
seed: inteders {random number seed?’

error: inteder: {displav_init return variable’s 0 = oK}

Listings of Example Programs

FPATdEd R EERRERERE AR RN R E RN RN R R R RN RN R R R R R AR EF R RN RN RN R AR RN RR)
procedure Alrha(State: DisplavStates))

R T T LT T T T e e SRR }
{ This Pprocedure turns the alepha raster on or off, }
i e ek T T R ey }
const
AlrhaRaster= 10511 {mnemonic better than madic numberl
var
AlrhaOn: array [1++1] of inteders { A\ This is all stuff that %
Rarrav: array [1+4+11 of reali { ¥ is needed by the }
Errors: inteders {7/ "outeput.esc" pProcedure., }
begin {procedure "Alrha"}

if State=0n then AlrhaOnll1l:=1

else AlphaOnl1l:=03

outPut_esc{AlrhaRasters1+0+AlPhalnRarravsError)s

if Error<:0 then writeln(‘Error “sError:0s’ in procedure "Alrha", ')

end} {procedure "Alrha"}

$Pages LR EERE R R RN R RN RN R R R RN RN R RN ER R R R R RRRRR R RN R RN RN R RN R RN RFERER)
procedure DrawingMode(Mode: DrawindModeTvre):

T e T e S U S ¥
{ This procedure selects drawind modes for a monochromatic CRT, }
et T Tt T ey, ¥
const
SetDrawindModes= 10523 {mremonic better than madic number)
var
DrawMode: array [1+,11 of inteders {\ This is all stuff that)
Rarray: array [1++11 of reals { * is needed by the ¥
Error: inteders {7/ "outrPut.esc" pProcedure, }
bedin {procedure "DrawingMode"}
case Mode of {\ }
Erase: DrawModel[11:=23 { A\ Convert DrawindMode enumerated 1}
Dominant: DrawModel[11:=03 { type into the appropriate }
Complement: DrawModel[11:=33% { / value for ODUTPUT.ESC procedure, }
endi {casel} {7/ }
output.esc{SetDrawindModes1+0sDrawModesRarravsError)} {set it}
if Error<>0 then writeln(’Error ‘sError:0+’ in procedure "DrawindMode™, ')}
endi {procedure "DrawingMode"?}

SPATEF (FERRERFERRRR R AR RRRR R R RN R RN RN R RN RN RN RN ERERRRRRRRR RN RN RRRRNNR]}
function Rand: short_inti

begin {function "Rand"}
Seed:=((S5eed+13579)%39777) mod 100003 {make new seed}

Rand:=Seeds; {return current value of seed}
endi {function "Rand"}

FPaged (R R R R R RN R R R R R R RN R R RN RN RN RN RN R R R R AR AR RN RN R RN NFENRRS]}
procedure DefineDeltass

var
Side: short_int3
begin {body of procedure "DefineDeltas"}
for Side:=1 to Sides do hedin {for each vertex}
DxfSidel:=Rand mod S5+23 {magnitude of this dx}
if Rand>=3000 then Dx[Sidel:=-Dx[Sidels {sign of this dx}
Dy[Sidel:=Rand mod S+2; {magnitude of this dv}
if Rand>=3000 then Dy[Sidel:=-Dvy[Sidels {sidgn of this dv}

endi {for side}
endj {bodv of Pprocedure "DefineDeltas"}

167

168 Listings of Example Programs

$rpades
bedin
DrawMode:=Dominant}
Seed:=11733%
grarhics.inits
displav_init{crtrcontrolerror)s
if error=0 then bedin
set_aspect(311,389)3
set_window(0,»311,0,389)3
Alrha(Off)}
DrawingMode (DrawMode) 3
for Sider=1 to Sides do begin
HLGsSidel:s=Rand mod 5113
¥{0ySidels=Rand mod 3893
if Side=1 then
int_moue (XL0:Sidelsy¥Y[0:5idel)
else
int_line(X[0,5idel ¥L0Sidel)s
endi {for side}
if Sides:2 then
int_line(HLO,114YL0O11)3
DefineDeltass
for Polvi=1 to Polvdons-1 do hedin
for Side:=1 to Sides do bedin
Temp:=X[Polv-1,Sidel+Dx[Gidels
if Temp:311 then
Dx[Si1idels=-Dxl8idel
else if Temp<(O then
Dx[Sidel:=-Dx[Sidels

W[Polv Sidel:=X[Polv-1:5idel+Dx[5idel;

Temp:=Y[Poly-14+8idel+Dv[5idels

if Temp:389 then
Dv[Sidel:=-Dy[5idel

else if TempiQ then
Dy[Sidel:=-Dv[Sidels

Y[PolvsSidel:=Y¥[Poly-1,5idel+Dv[Sidel}

{**************************'l-***}

{bodv of erodram "DrawMdPrg"}
{specify drawing model
{initialize random number seed}
{initialize dgrarhics librarv}
{initialize CRT?}

{if no error occurred.,..}

{use the whole screen}’

{ovie user unit=one Pixel?}

{turn off the alrha screent
{select specified drawing mode?
{define the first polvdon}
{define X component’

{define Y component?’

{\ }

{ \ Moue to the first 1}

{ * points and draw to 7}

{ 7/ all the rest. ¥

{if simple lines don’t closel}
{define dx and dv for each vertex}
{draw all the Polvdons}

{each vertex of each polvdon}
{avoid recalculation?}

{ A\ ¥
{ N\ Is X off the ¥
{ / screen? +
{7/ }
{calculate next x?
{avoid recalculation?
{\ }
{ N Is Y off the ¥
{ / screen? ¥
{7/ }

{calculate next v7

if Side=1 then int_move(X[Polv,Sidel YLPoly,5idel) {move to first Point}

else int_line(X[Polv8idels¥[Polv5idel)s

endy {for sidel}
if Sides 2 then
int_line(¥[Polvs11:¥I[Polvys11)3
ends {for Polv}
New:=03
while true do bedin

if New=0 then Previous:=Polvdons-1
else Previous:={(Previous+l) mod Polvdons3
if DrawMode=Dominant then DrawMode:=Erase:

DrawingMode(DrawMode) 3
for Gide:=1 to Sides do hkedin
if Side=1 then

int_move(XINew:5idel ¥I[NewsSidel)

else

int_line(X¥I[NewsSidels¥YINewSidel)s

endy {for Side}
if Sides:2 then
int_line(XI[New 1l »¥[News11)3

{draw to all the rest?}

{if simple lines don’t close Polvdon}

{start re-use at entry O}

{ad infinmitumes}

{start re-using over}

{re-use next entry}

{ \ If Dominants todgle statel
{select specified drawing model

{erase the oldest linel

{ A Move to the ¥
{ \ first Point: ¥
{ / draw to all the 1}
{ / rest. }

{if simele line, don’t close Polvdon}

if DrawMode=Erase then DrawMode:=Dominanti { \ If Erase, todgdle statel

DrawingMode (DrawMode)?

{gelect specified drawing model}

for Side:=1 to Sides do bedin
Temp:=X[PreviousSidel+Dx[Sidel}

if Temp:311 then
Dx[5idel:=-Dxl[8idel

else if Tempi0 then
DxlSidel:=-Dx[8idels

¥[NewsSidel:=X[Previous,5idel+Dx(8idels
Temp:=Y[Previous,5idel+Dy[Sidels

if Temp>3B9 then
Dv[Sidel:=-Dy[Sidel

elgse if Temp<Q then
Dy[Sidel:i=-Dv[8idels

Y[NewsSidel:=Y[Previous,Sidel+D»[Sidel}
if Side=1 then int_-move{X[New:Sidel¥[News Sidel)
else int_line(X[NewsSidel»Y[New,5idel)s

ends {for side}
if Sides»2 then

int_line(X[News 11 s¥INews11)3

New:=(New+1) mod Polvdonsi
endi {whilel
ends d{error=07}
grarhics.termi
end, {prodram "DrawMdPrg"}

FillProg

prodram FillProd(outprput)i

import

ddl_libsddl_tvypessdgl.polysddl_inai {access the necessary Procedures?
const

MaxPoints= 273 {number of Points in arravs?

Crt= 33 {device address of drarhics raster’}

Controls= 03 {device control word} idnored for CRT?
tvPe

Reals= array [1..MaxPoints] of reals {to contain X and Y values?}

Word= -32768.,.327873 {16-bit word}

Intederss= arravy [1,.Maxpoints] of Wordj {to contain oP. selectors}
const

Kualuess=

-J

rJ r

-3

F

Listings of Example Programs

{\ }
{\ ¥
{ A }
{ \ }
{ \ }
{ \ +
{ \ Draw the }
{ A\ new line }
{ \ the same >
{ / way as }
{ / before. +
{ / +
{ / ¥
{ / ¥
{ / }
{ 7/ }
{7/ }
{/ }

{next one to re-use’
{end of conditional codel}

{terminate drarhics librarv}
{end of prodram?}

{program name same as file mamel}

Realsl 1.5 2,5y 2.5+ 1.59-1454-2,5+-2,5+-1,3y A{Octadon}
2.5 2.5 2459-2451-2.5 {Box}
W3 -0454-2.59-3,04-4,0,
2.9 443y 245 5,0 4.0,
0,S9-140y 1,0y 0,513

{Left leg}
{Ridght led}
{Nozzle}

Yualues= Reals[1.0+ 2.0 340y 440y 4,0y 340y 240y 1,0y {0Octadon?
1.0, 1,04-2:04-2,0 1.0 {Box}
~2404-4,0y 0,045-4,0,-4,0, {Left leg}
“2003-4,0y 009-4,04-4,0 {Ridht led}
“204=3404-3,0,-2,011% {Nozzle?}
OrCodes= Integersi2slsl sl a1 91911y {Octadon?
2110101, {Box?}
21910291 {Right led}
21014241 {Left leg}
241019113 {Nozzlel}
var
Error: inteders {display_init return variabled O = oK}
I: intederi {loor control variablel} i
LemXs Lem¥: Reals? {so we can Pass it to "polvdon"}
DpSelectors: Intederss {ditto?}
Points: intederi {ditto?}

169

170 Listings of Example Programs

$radest
bedin
Lem{:=Xvaluess
LemYs=Yualuess
OpSelectors:=0rCodess
Points:=MaxPoints:
graphics.inits
displav.init(Crt+Control+Error)s
if Error=0 then hedin
set_aspect (511,389}
set_window(-7,3918:5,-104+10)1
set_pdn_style{ld);

R Y Y S S R T S RS

{body of Pprogram "FillProg"}

{ \ Put into variable arravy so }
{ * it can be passed by +
{ / reference into the DGL eproc.?}
{Put constant into an arrar variahle?}
{initialize drarhics library}
{initialize CRT}

{if no error occurred,..?}

{use the whole screen’}

{invoke isotropic units)
{crosshatched f111%3

polydon(Points Lemi{sLemY OrSelectars)s {draw the lines}?
set_window(-18.5,7,-10,10)3 {invoke isotroric unmits}
set.pdn_table(1440,51,04+1)3 {set the "do a fill" flag}

set.color_table(1+0,125,0,125,0,123)% {specify 12,57 drav scale?
set_Pdn_color(i)i {use specified "color"}
polvdon_dev_der(PointssLemid+Lem¥YsOrSelectors) s {draw the lines}

{end of conditional code}
{terminate draphics librarv}
{end of Prodram’

ends A{Error=07}
drarhics.terms
end, {pProdram

FillGraph

prodram FillGrarh(outPut)}

"FillProg"}

import dgl_lib, d9l_tvepes, dgl_polvs
const
CrtAddr= 343
ControlWords= 03
tvpe
RDataTvpes= array [0+,121 of real:s
WDataTvepe= array [0,.121 of -32768B.,.,32767;
const
Kvaluesg= RDataTvrelOs1 92434435168+ 7:8:+9410,10,013
Yualuess= RDataTvrPel2+443+6+5+533+7:54648,5040173
OperationSelectorss= WDataTwrel2slslsl sl slslslslslslslslls
var
ErrorReturn: inteder:
Ky Y RDataTvpes
DepSel: WDataTvres
SPaged {EEEEAERRERF RN RN RN RN R R R R E R R AR R R R R RN AR R IR AR RN N R RN R FRFRRFRRRE N]
bedin {rrodram "FillGrarh"}

draphics_init?
display_init(CrtAddrsControlWordsErrorReturn) s
if ErrorReturn=0 then bedin
set_aspect(311,389)3
set . window(0,10,04510)3%
mouve(Q,0)5F line(0,10)35 line(10,10)3
Ki=Xvaluess ¥Yi=Yvaluess

set_pdn.table(14+0,333+17:34,1)3

set.pdn_style(i)}
polydon(13y%s¥+0rSel) 3

endi A{ErrorReturn=07}

drarhics.terms

end,

line (10,005 line(Q,0)3
OrSel:=0OperationSelectorss

{prodram "FillGrarh"?>

GstorProg

$sysprod on$
prodram GstorProd(KevboardsoutPut)i
label 13

import dgl_lib,s dgl_inaj
const
Crt= 33
Control= 03

hex (/3300007) 3
B2403
1,313624678864

GRasterAddr=
GRasterSize=
Ratio=
tvee

GRasterTrpe=
HdustifyTrrpe= (Left HCenteredsRidght)s
YdustifyTrrpe= (Bottom:VCenteredsTor)3
DisplavStates=(0ff+0n)3

array

AndTvpre= (DedsRadGrad) i
RoundTyre= (Upy Downs Near)s
Str255= string[23513
var

Error: inteder?
Decades Units: intederi
KaDxs reals’
KminsAmaxsXrande: intederi
YDy reals
YminsYmaxsYrande: inteder?
I: intederi
Strng: Str2553
Character: chars
Temperature: reali
D1dX, OldY: reali

GRasterTyres
GRasterTvpres
texti

reals
HJustifyTrpres
YJdustifyTyres

GRaster[GRasterAddrl:
Screen:

Kevboard:
CharWidth:CharHeight:
HJustification:
Ydustification:

CharTheta: reals
ClipXminy ClipXmax: real’
ClipY¥min,s ClirYmax: reals

[1.,.GRasterSizel of

Listings of Example Programs

{50 we can define array addresses?
{program name same as file namel
{access the necessary procedures’}
{device address of drarhics raster?
{device control wordj idnored for CRT}
{address of drarhics memorv}

{32-bit inteders in drarhics raster}
{aspect ratio of the Model 36 CRT}

intederi

{used by
{used bv
{used by

procedure Ldir}
function Round2}
procedure Glabell
{display_init return variablej O = ok}
{for lodarithmic X-axis}
{x-axis variables?

{more x-axis variables}
{v-axis variables?}

{more v-axis variables?}
{utility variable?}

{another utility variable?}
{and vet another?}

{rneed a larder rande than an
{last point drawn tol}
{actual drarhics raster}
{user’s screen imade}

{allow GETs from the Kevboard}

{ \ These are global variables

{ \ used by the CharSize/

{ / LabelDirection/LabelJdustify/
{ / Glabel series of Pprocedures,
{so0ft clir limits in x2}

{s0ft clirp limits in ¥}

inteder?

R

$include ‘DGLPRG:ConuVltol’$

$Pagded {REFEFEEFFRRRAFRERRERRRR R RER RN R R RN R ERRR AR RER R AR RR N R AR RRR AR NN RN]
procedure CharSize(Heidht,» AspectRatio: real)i
T e R }
{ This procedure defines character cell size and the puts the Width and +
{ Height values into dlobal variables for later use, The arduments Passed 1}
{ in are the height of the character cell in VIRTUAL coordinatess and the }
{ aspect ratio of the character cell, The values for the window limits ¥
{ mavy be anvthingi thev are taken into account and do not affect the size }
{ of the characterss since thev are defined in virtual coordinates, This }
{ procedures alond with Lord and Ldir, define global variables for use hv ¥
{ Glabel, }
T }

171

172 Listings of Example Programs

yar

Width: reals {temporary spot for width?

KOy YOu reals {030 (virtual) in world}

wly Y1z reals {1y! (virtual) in world}
bedin {body of procedure "CharSize"}
ConvertVirtualToWorld(0,y0sX0,Y¥0)3 {convert 00 in virtual to worldl}
ConvertVirtualToWorld (i syl oX1s¥1)3 {convert 1+1 in virtual to world)
Height:=Height*(Y1-Y0)} {convert height in virtual to world}
Width:=Heidht*AspectRatio* (X1-X0)/(¥Y1-¥0)y A{convert width in wirtual to worldl}
set_char.size(Width Heidght) {invoke the parameters}
ends {procedure "CharSize"}

Fragded [HEEEXXERREEERRAERRRAEERRRRERRRRRRERRRREEEFRFRRERRRNERRRRENFRRRRRRRNR)
procedure LabelDirection(Direction: reali Units: AndTvrel:

R L LT T pppep —————— e e ¥
{ This procedure is used in condunction with LabelOridins CharSize and ¥
{ Glabel. It sets the labelling direction to be usedsy and places the ¥
{ direction into a dlobal variable so Glabel can use it. b
L o o e e H
const

Deg_per_rad= 357,29577951313% {180/ri: for converting dedrees to radians?
Grad_rer_rad= B3,66197723683 {200/pi: for converting drads to radians?
bedin {procedure "LabkelDirection"}
case Units of
Deg: Direction:=Direction/Ded_per_rad; {dedrees to radians}t
Rad: 3 {correct units already?}
Grad: Direction:=Direction/Grad_per_radi {drads to radians?}
endy {casel}

CharTheta:=Directions {pPut into a dlobal variable}
set_text_rot{cos{(CharTheta)ssin(CharTheta))} {invoke the new text directionl
ends’ {procedure "LabelDirection"}

$Paget L EEER AR R RN R RN R RN R R R RN RN R AR RN R AR RN R R R R RER RN R RN R RN ERRRRRN)
procedure Labeldustify(HJdust: HJustifvTrres WVdust: VJustifyTrpe)s

T e ¥
{ This Procedure is used in condunction with Pprocedures CharSize: +
{ LabelDirection» and Glabel. This Just Puts a wvalue into dlobal ¥
{ wvariables which will be subseauently used by Glabel, ¥
R e L ¥
bedin {procedure "Labeldustify"

Hdustification:=HJust3i

Ydustification:=YJust

ends {procedure "Labeldustify"}

$Paded [HEEREEERR R RN R RN R AR RN R R RN R R RN RN RN RN R RN RN RN R RN RN RN RN NER]
function Atan(Y,s X: reall): reals

L T T T T ¥
{ This function returns the value of the arctandent of Y/Xy Placing it ¥
{ in the correct aquadrant, If ¥ and X are both zeros the result is zero. }
L T e ¥
const

Pi= 3+141392653593 {Pi}
bedin {function "Atan"}

if H=0,0 then Atans=(Pi/Z2+Pi%*ord(Y<0,0))*kord (Y:0,0)
else Atan:s=arctan(Y/X)+Pi*ord (X0, 0)+2*Pi%ord ((X:0,0) and (¥Y<0,0))1
ends {furnction "Atan"}

Listings of Example Programs

FPagded {HNFFFREFRRRRRRRRRERRRR R RRRRRRERRRFRRER AR RRRREF IR RN RRRRRRR R AR R XD
procedure Glabel{(Text: Str235)3
L T T T e e }
{ This procedure labkels a strind of text at the current Pen Position, }
{ It takes into account the current label direction (set by Procedure }
{ "LabelDirection"s the current character size (set by procedure }
{ "CharSize")s and the current latel Justification (set br pProcedure }
{ "Labeldustify"), }
e e R }
const
CharSizeCode= 2501 {mmemonic better than madic number?}
CurrentPositions= 2593 {ditto}
tyrPe
Positionss= Ha¥) i
PositionTrpes= arrav [Positions] of reals
CharAttributess= (Width Heidhth) i
CharAttrTypres= array [CharAttributes] of realsi
var
Chars: inteders
Charsize: CharAttrTveres
LensHeight: reals {lendth and height of character stringl
DxsDvs reali
R+Theta: real {for rectandular-to-polar conversion}
Pac: packed array C1.,.11 of chari { \ These are the }
Tarrav: array [1.,.,1]1 of inteders { \ sundry items }
Position: PasitionTypred { / needed for the 1}
Error: inteders { / call to "ina_ws"}
bedin {procedure "Glabel"?}
ina.ws{CharSizeCodes0s0+2+PacslarrayCharsizesError); {9et Pen Position}
if Error{:0 then writeln(‘Error’sError:0y’ in "Glabel",’)}
Chars:=strlen(text)’
Len:z=CharsizelWidthl*(7%Chars+2*(Chars-1))/9) {lendgth minus inter-char dar}
Height:=CharsizelHeighthl*B8/153 {heidght minus inter-line gar}
Dxs=Len¥(-prd(HJustification)/2)3
Dy:=Heidght*(-ord(VJustification)/2)}
Ri=sart (Dx*Dx+Dv*Dv)i { \ Convert to polar coordinates so 1}
Theta:=Atan(DyDx)3 { / rotation is easvy. ¥
Theta:=Theta+CharThetas {add the LabelDirection angle}
Dx:=R¥cos(Theta)i { \ Convert R and the new Theta back %
Dy:=R*sin(Theta)} { / to rectandular coodinates. ¥
ing_ws{CurrentPositions0s0+2+PacslarrayPositionsError); {det Pen Position}

if Error=0 then bedin

move{Position[¥1+Dx:Positionl¥1+Dyv)3 d{move to the nmew starting roint}
dtext{text)s

end A{Error=07}
else writeln{(‘Error’sError:0s’ in "Glabel", ')}

endi {procedure "Glabel"}

GPaged [EEEFERFRERRREFRRRERRRE RN RRR AR AR AR RRFRFERARRFRRARRRFRRRRRRRRRRNRRR]
procedure MainTitle(¥s ¥Y: reali Title: Str233)3
e R }
{ This procedure writes a larde label for the main title of a rPlot. }
T T T R }
bedin {procedure "MainTitle"}

CharSize(0,0B+0.,8)3

LabelDirection(0,Ded) 3

LabelJustify(HCentered:Tor) i

move (XsY)1

Glabel(Title) i

endsi {procedure "MainTitle"}

173

174 Listings of Example Programs

FPagded (R EEHEHEEERRREREERE R RN RN RN R AR AR R RN RN R RN R RN RN RN AR AR AR R AR R RN RRAN AR}
procedure XAxisTitle(Xy Y: reals Title: S5tr255)3

L g }
{ This procedure writes a small label for the X-axis title of a plot. +
L e T S Sy gy }
bedin {procedure "XaxisTitle"}

CharSize(0,04,0.6)1

LabelDirection{0,Deg)s

LabelJustifv(HCentered Bottom)}

mouve (A sY¥) 3

Glabel(Title)s

endj {procedure “"XaxisTitle"}

FPAaged {HEER AR R R R R R R AR NN AR R EA AR R R RN R R E RN R RN FRRRH¥)

procedure YaxisTitle(Xs¥: reals Title: Str255)3

U }
{ This procedure writes a larde label for the Y-axis title of a plot, }
L e T T T E T Ry }
begin {procedure "YaxisTitle"}

CharSize(0.,04,0,6)3
LabelDirection(890,Deg);
Lateldustify(HCentered sTor)s
move (XsY) 3

Glabel(Title)s

ends {rProcedure "YaxisTitle"}

FPATES (R EEEA AR R R RN R R R AR E R RN R RN AR E R R R R IR R RN NN RN AN RNR NN T

procedure ClirLimit{(Xmin+ Xmaxs Ymins Ymax: real)s

e e L T L T T pu U }
{ This procedure defines the four dlobal variahles which sepecify where the }
{ soft clip limits are, }
R T g ¥
hedin

if Xmin<Xmax then hedin
ClipXmivni=Xmin
ClirXmaxz=Hmax

end

else bedin
ClirXmins=Xmax
ClirXmax:=Xmin

{

{ A\ Force the minimum soft

{

{

{

{

{
endsi {7/

{

{

{

{

{

{

{

{

\ clir limit in X to hbe
A\ the smaller of the two
/¥ values passed into

/ the procedure,

if Ymin<Y¥max then bedin
ClipYminz=Ymin
ClirYmax:=Ymax

end

else bedin
ClipYminz=Ymaxs
ClirYmax:=Y¥mins

ends

ends

\ Force the minimum soft
\ clir limit in Y to be
\ the smaller of the two
/¥ values passed into
/ the procedure,

B i T e e

Listings of Example Programs

GPaded {FERREEERRFERRERERREE RN RN RER AR RER R AR RRRRFRRRRRA RN R R RN RRR RN}
procedure ClipDraw{Xly Y1, X2+ Y2: real)s
T T L }
{ This procedure takes the endpoints of a lines and clieps it. The soft H
{ c¢lip limits are the real 9lobal variables ClipXmins CliPXmaxs CliPYmin }
{ and ClirYmax. These may be defined throudh the procedure ClirLimit. }
T e ¥
label

13
tvyre

Eddes= (LeftsRightsTorsBottom)i {possible eddes to cross?}

ODutOfBounds= set of Eddes’ {set of eddes crossed?
var

Out +Outl 0ut2:0ut0fBoundss

Ky Y reals
TR ¥
procedure Code(¥s Y: real’ var Out: OutOfBounds)s
bedin {nested procedure "Code"}
Out:=C13 {null set}
if x<Clip¥min then Out:i=[left] {off left edde?}
else if x»ClipXmax then Dut:=Lrightlj {off ridht edde?}
if v<Clip¥min then Out:=Dut+lbottoml {off the bottom?}
else if vy ClipYmax thewn Out:=0ut+ltorls {off the top?}
end}i {nested procedure "Code"?}
T e }
bedin {body of procedure "ClipDraw"}

Code(X1¥1+0uti)s
Code(X2)¥2+0ut2) 3
while (Outi1<>[1) or (Qut2<»[1) do bedin
if (Outil*0ut2)<>[1 then doto 1}
if Quti<>[] then Out:=0utl
else Qut:=Dut23
if left in Out then bedin

yrY1+(Y2-Y1)*(Clir¥min-X1)/(X2-X1)3i{adiust value of v

x:=ClipXmini
end {left in Out?}
else if right in Out then bedin

{fidure status of point 17}

{figure status of pPoint 2%}

{loop while either Point out of randel
{if intersection nov-nulls no linel

{0ut is the non-empty onel

{it crosses the left eddel
approrPriately’}
{new x is left edgel}

{it crosses right eddel

vrzY1+(Y2-Y1)*(Clir¥max-¥1)/(¥2-X1)i{addust value of v arpropriatelv}

x:=ClirpXmaxi
end {right in Out?}
else if bottom in Qut then bedin

{new x is right eddel}

{it crosses the bottom eddel}

X1+ (H2-X1)*(ClirYmin-Y1)/(Y2-¥1)i{adJust value of x arpropriatelv}

yi=ClirYmins
end {bottom in Out?}
else if torp in Dut then bedin

{new v is bottom eddel

{it crosses the top eddel}

XrzH1+{(X2-X1)*(ClirYmax-Y¥1)/(¥2-Y1)i{addust value of x approrriatelv}

vi=ClirYmaxi
endy {tor in Out?}
if Out=0utl then bedin
Hli=x3 Yii=v3 Code(x sy sQutl)s
end {0ut=0uti?}
else bedin

V-

HZ21=x1 YZ2i=yi Code(x sy s0ut2)s
endi d{else begin}
endy {whilel}

move{xlyy1)i
line(x2:v2)3

1: ends d{procedure "ClipDraw"?}

is top eddel}

{new v

{redefine first end pPoint}

{redefine second end pPoint}

{if we get to this Points the line...}
{+vvis completely visibles so draw it}
{return}

175

176 Listings of Example Programs

FPaged (I HEERERREREERERRER RN AR RN R R RN R R RN R R AR AR RN R R AR NN RHRRH]
furnction Round2(Ns M: real’ Mode: RoundTvrpe): reals

{ This function rounds "N" to the nearest "M"y according to "Mode", This ¥
{ function works only when the ardument is in the rande of MININT.,MAXINT., }

ek L LT T Ty pep ey p———— ¥
const
ersilon= 1E-103 {roundoff error fudde factor?
var
Rounded: reals {temporary holding areal
Nedative: booleans {flag: "It is nedative?"}
bedin {body of "Round2"}
Nedative:=(NIQ,0)} {is the number nedative?}
if Nedative then hedin
N:i=abs{N)i {work with a pPositive number?
if Mode=Up then Mode:=Down {if number is negatives .47
else if Mode=Down then Mode:=Upj {vrsreverse up and down?t
endj
case Mode of {should we round the number,..?}
Dowr: Rounded:i=trunc(N/M)*#M; {vevleft on the number line?}
Up: begin
Rounded:=N/M3 {+soridht on the number line?}

if abs(Rounded-round(Rounded)) epsilon then
Rounded:={trunc(Rounded)+1,0)*M

else
Rounded:=trunc{Rounded) *M;
end s
Near: Rounded:=trunc(N/M+M*0,3) %M} {vvsto the nearest multirle™}

endi {casel}
if Nedative then Rounded:i=-Rounded} {reinstate the sidgn}
RoundZ:=Roundeds {assign to function namel
ends’ {function "Round2"}

FPATEE KRR A AR AR R RN R R R R AR AR RN RN R R R RN RN AR R R RN RN R R RN RN %X)
procedure YaxisClirp(Spacings Location: reali Mador: inteder;
Madsize» Minsize: real)s

{ This Procedure draws an Y-axis at any intersection Point an the plotting ¥
{ surface. Parameters are as follows: ¥
{ Spacing: The distance between ticK marKs on the axis. ¥
{ Location: The X-value of the Y-axis. }
{ Mador: The number of ticKk marKs to de before drawing a mador tick H
{ mark, If Mador=35, every fifth tick mark will be mador, ¥
{ Madsize: The lendthy in world unitss of the mador tick marks. +
{ Minsize: The lendgthy in world unitsy of the minor tick marks, +
R T T T T pepupp——— ¥
var

Y reals

SemiMinsize: reali

SemiMadsize: reali

Counter: inteder: {Keers track of when to do mador ticksl}

bedin {body of procedure "YaxisClier"}
SemiMadsize:=Majsize*0,53

SemiMinsizer=Minsize*0,53

Counter:=03 {start with a maJdor tick}
ClipDraw(LocationsClirYminsLocationClirYmax) i
YizRoundZ2(ClirpYminsSracind*¥MadorsDown)d {round to next lower madorl

Listings of Example Programs 177

while Y<=ClirYmax do bedin
if Counter=0 then
ClirDraw(Location-SemiMadsizes¥sLocation+SemiMadsize)
else
ClirDraw(Location-SemiMinsize ¥ Location+SemiMinsize ¥
Counter:=(Counter+l) mod Madors
Yi=Y+Spacingi
endi {while}
endsi {procedure "YaxisCliep"}
FPATEd {HEEEEEERERERRERRRRFERRR RN R AR RE AR R R AR RN R R RN R ERRRRRNRENR T
procedure Alrha(State: DisrplavStates)’

{ e e e ¥
{ This procedure turns the alrha raster on or off, }
e T ek e L T ¥
const
AlrhaRaster= 10311 {mnemonic better than madic number}
var
Alrhaln: array [1+,4+11 of inteders {\ This is all stuff that }
Rarrav: array [1+.,1) of reali { » is needed by the }
Error: inteders {7/ "output_esc" procedure., }
bedin {procedure "Alrha"}

if State=0n then AlrphaOnl1l:=1

else AlphaOnl1l:=03

outPput_esc(AlrhaRasters1+0+AlrPhaln RarravysError)i

if Error<»0 then writeln(‘Error “sError:0+’ in procedure "Alrha™,’)}

ends {procedure "Alrha"}

FPaged (R EEREREEAERRRRRERREE RN R RE AR RN RN R R RN R RRE R R R AR R R R RN RN RN RRRRN)
function LoglQ(X: real): reals

L el e L T Tt ¥
{ This function returns the lodarithm to the base ten of a numhber. }
e e e e e }
const

Log_10= 2,30258509299; {log to the base e of 10}
bedin {function "LoglO"}
Logl0i=1In(X)/Lod_103
ends {function "Logl0"}

FPaged {HEREEEEEREE R R R RN R RN R R RN RR R R RN ERRRRERE R RN RN RRN RN RN NN NR T
function Xto¥Y(¥,y Y: real): reali

T e h kg RS ¥
{ This function evaluates ¥ to the Yth rower. }
R R et T T T ey ¥
bedin {function "XtoY"}

KtoYezexp(Y*1n(X))3 {an lodarithmic identitv}

ends {function "XtoY"}

FPAdEd {HERREREERRRRRE RN RN RN R R RN RN RN R RN RRR R RARRE AR R AR AR RRNH]
procedure Gload{var Screen: GRasterTvpe):

R e R gy ¥
{ This procedure loads a user’s array into drarhics memory., ¥
L R e et LT T U ¥
bedin {procedure "Gload"}

GRaster:=Screen;’ {copy user array into drarhics memory}

endsi {procedure "Gload"}

178 Listings of Example Programs

[N 2 2 R R R R 2R R R R R RN R R R s 3 R 22 s TR S IS IIICIIIIIIIY
procedure Gstore(var Screen: GRasterType)s

R T T TP R ¥
{ This procedure stores drarhics memory into a user’s arrav. ¥
T T kT Ry S ¥
bedin {procedure "Gstore"}
Screen:=GRasters {cory drarhics memory into user arrav’
ends {procedure "Gstore"}

FPaded R EEE RN R R RN NN RN RN R RN RN R RN R R RN RN RN RN AR E R RN RN NNAH)
function Sign(X: real): inteders

L e e e m oo ¥
{ This function returns the sidn of a numbery i.evs -1 if the number is +
{ mnegatives O if the number is zerc, and +1 if the number is positive, }
L m m e }
bedin {function "Sign"}

Sidgne=zord (K:0,0)-ord (X0, 0) 3 {40 -> =14 =0 ->» 03 0 -2 1}

ends {furction "Sign"}

FPATEE [EEERE AR R R R AR R R RN RN IR RN RN R E R AR R FERR R R AR AR RN ERRR NN}
furnction Intensity (Wavelendthy» Temperature: real): reals

bedin {furction "Intensity"}
Imtensity:=37410/XtoY (Wavelendth3)/(exp(14,39/ (Wavelength*Temperature))-1)3
ends {function “"Intensity"?
FPATEE AR AR R AR R AR RN R RN AR RN RN R ERE RN E AR AR R R RN RN NRER AR RN}
bedin {body of eprogram "GstorProg"}
grarhics_inits {initialize grarhics librarv?}
displav_init(Crt Control+Error)i {initialize CRT?}
if Error=0 then bedin {if no error cccurred..s}
Aleha(Dff) 3
set_aspect(Ratiosi) s {enable entire pPlotting surface?l
{z==== Label the draph =s-=s=-=-==Z===-==2=-==Sc-=ZZ=SZZ=SZS-CSSIIZSSSCSSSITIISSSSST)
for I:=-3 to 3 do {severn iterations?} {\ HWrite
MainTitle(I*0,00241'Blackbody Radiation’)i { \ the four
HaxlsTitle(0,0,83+'Temperature (K):) { main
YaxisTitle(-140y Intensity of Radiation’)} { / labtels.
KaxisTitle(0,-0,92) Wavelendth (microns)’)s {/
set_uviewpaort(0.,1,0,98,0,15/Ratios0,9/Ratio)}
{define subset of Plotting surfacel
Kminr=-45 {smallest power for wavelength?}
Kmax:=33 {lardest rower for wavelendth?}
Krande:=Xmax-Xminsi {distance between X extremes}
Dxi=0,13 {increment of X
Ymini=-51 {smallest power for intensitv}
Ymax:=253 {lardest power for intensity}
Yrandes=Ymax-Ymin3 {distance between Y extremes}
Dvi=13 {increment of Y7
set_window(XminsXmax s¥Ymins¥max)s {scale the window for the datal
{===== Draw and label lodarithmic X-axis dgrid ====s=z=z=s=z=s=zz=zzzzzzzzzzzzzz=zzz}
for Decade:=Xmin to Xmax do bedin {one decade equals one mantissa cvclel}
for Units:=1 to 1+8%ord(Decade<Xmax) do bedin {do 2-9 if not last cvcle}
Ki=Decade+loglO(Units)s {calculate X for screenl’
move (X s¥min)i {\ Draw a vertical line for }
Tine(Xs¥max) s {7/ Y-axis at appropriate place }

ends {for units?}
endy {for decadel}
KizXmins {starting place for X-axis labels?}
Strnds=""1 {null out the stringl

V=

while X<=Xmax do begin
LabelJustify(HCentered Tor) i
CharSize(0,025,0,6)3
move (X ¥Ymin-Yrange*0,015)4
Glabel(’10)3
CharSize(0,015,0.,6)3
LabelJustifv(Left Bottom)}
move{X+Xrande*0, 01 y¥min-Yrande*0,023)3
strwrite(Strngsl I sXs2:0)3)
Glabel(strltrim(Strng))s
Hi={+Dx*10Q3

Listings of Example Programs

{\ }
{ A\ }
{ \ b
{ \ }
{ N\ HWrite the }
{ * labels for the }
{ / K-axis, }
{ / }
{ / }
{ / }
{7/ }

endi {while?}

{===== Draw and label lodarithmic Y-axis grid ===z=z=z=zz=zs=zz=zzz=z===z===zzz=z==z=z=}

ClirLimit(MminsXmax ¥Ymins¥max)s {define soft clir limits for axes}

YaxisClir(1l +Mminsl0,01,0,01)1 {plot left Y-axis}

YaxisClirp (1l sXmax»140,0140,01)3 {plot ridght Y-axis}

Ye=Ymini {starting value for v}

while Y<=Ymax do begdin
move{XminY) 4 { \ Draw horizontal line for }
Tine{Xmax V)3 { /7 an H-axis. }
Labeldustify (Ridht WCentered)s {label origin: center of right eddel
CharSize(0,025,0.8)3 {\ }
move(Amin-Xrande*0,03,Y)3 { A\ }
Glabel('107)3 { \ +
CharSize(0.,015,0.,6)3 { A\ MWrite Y-axis ¥
LabelJustifv(Left Bottom)s { * labels in +
move{Xmin-Xrande*0,025yY+Yrande*0,01)1 { / exponential ¥
strurite(Strngsl 1Y 2:0)1% { / form, }
Glabel{(strlitrim(Strnd))3 { 7/ }
Yi=Y+5#Dv 3 { / }

endi {while}

{=z===z= Here is where the action starts FEFREREETCITISSSISSSSsIcszossssssssoccl)

Gstore(Screen) i {Put the imade into arrav}

CharSize(0,0390,6)3 {set up charsize for temperaturel}

LabelJustifv(Left Bottom)s {set up lakel oridin for temperaturel}

while true do bedin
read(KevboardsCharacter)3 {d9et character from Kevboard}

if Character='g9’ then Character:=‘Q’}

if (Character>=’1’) and {(Characters='9’)
Gload(Bcreen);
Is=ord(Character)-ord('0’)3
Temperature:=I*XtoY(1043)3
move(025,6)1
strwrite(StrndslsIsTemperature:15:0) 3
Glabel(stritrim(Strng))3
DldX:e=Xmin3

DldY:=Intensity (XtoY(10401dX) +Temperature)s {Y

Ki=01dX+Dx 3

while X<=Xmax do bhedin

then bedin

{load the imade}
{translate char to number}
{build temperature}

{move to where temp is to bel}
{translate to string}
{label the temperaturel

{X starting point}
starting point}
{second point for X%

{loorp throudgh all Xs}

Ye=Intensity(RtoY(10sX)sTemperature)’ {calculate current X3

ClieDraw(O1dX Log10(01dY) sXsLodl0(Y))

DldX:=X3
Hi=X+2%Dx 3

OldYs=Y3

end: {whilel
end
else if Character='0Q’ then doto 1

write(#G)3
endi {while true’
endi {Error=07}
1: draphics_term:
end, {prodgram "GstorProg"}

else

{end

{end

i{draw line after clipping}
{save new o0ld values)}
{speed up the curvel

{beer}

of conditional codel

{terminate drarhics librarv}

of prodram?

179

180 Listings of Example Programs

IsoProg

prodram IsoProd(inputsoutrput Kevhoard)i

import dgl_libs ddgl_inas {access the necessary procedures’t
const
Crt= 33 {device address of drarhics rasterl}
Conmtrol= 03 {device control words idrnored for CRT}
Ratio= 1,3136746788635 {aspect ratio of Model 236 screen}
tvre
RoundTyre= (UpsDownrisNear) s {used by function Round2}
var
Error: inteders {displav_init return variabklei O = oK}
Aminedmaxs¥minsYmax: reals {isotropic units for window?}
Character: stringl11} {for continue messadel}
ClipXminy ClirXmax: reals {soft clir limits in X}
ClipYminy ClirYmax: reals {so0ft clir limits in Y}
Kevboard: texts {rnor-echoing inpPut}

GPpagded {EFEREFRFERERERE R RN AR R R RN AR RE AR AR R RN RN R E R RN RN RN RN RN R RN)
procedure Frames

e e P }
{ This procedure draws a frame around the current window limits, }
e e }
const
WindowlLimits= 4303 {mremonic better than madic number?}
type
LimitOrders= (Kmins Xmaxs Ymins¥max)s
LimitTvres= array [LimitOrder] of reali
uar
Pacs packed arrav [1.,,11 of chari { \ These are the sundries 1}
larrav: array [1++11 of inteders { \ needed by the call to +
Window: LimitTvres { / the DGL procedure }
Error: inteders { /7 Mima_ws", }
begin {todv of procedure "Frame"}

ing_ws(WindowLimits»0s0+44PacslarravsWindowsError)s

if Error=0 then bedin
move(WindowlXmind sWindowl¥minl) s {move to lower left corner?
line(WindowlXmind sWindowlYmax1})3 {draw to upper left corner?
line{WindowlXmax] sWindowlYmax1)s {draw to upper ridght corner}
line(Windowl¥max] tWindowl¥Yminl)s {draw to lower ridght corner?’
line(WindowlXmind sWindow[¥minl) 3 {draw to lower left corner?

end {Error=073}

else writeln(’Error ‘+Error:0+’ occurred in "Frame" ')}

endy {procedure "Frame"} {return}

Listings of Example Programs 181

SPaged (R EEENERE RN R R R R AR AR R R R R R R AR RRERR RN EE R RN RN RRRRAR]
procedure ClipLimit(Xminy Xmaxs Ymins Ymax: real)s

L e T i TR }

{ This pProcedure defines the four dlobal variables which srecify where the }

{ soft clirp limits are. ¥

T T T TR }

bedin {procedure "ClirPLimit"}

if Xmin<Xmax then bedgin {\ }
ClipKmins=Xmini { \ Force the minimum soft 1}
ClirXmax:=Xmaxi { \ clip limit in X to be ¥

end { \ the smaller of the two 1}

else bedin { /X walues passed into }
ClipXmins=Xmaxi { / the procedure, ¥
ClipHmax:=Xmini { 7/ }

endi {7/ }

if Ymin<Y¥Ymax then bedin {\ }
ClirYmin:=Ymini { A\ Force the minimum soft)
ClirYmax:=Ymaxi { \ clirp limit in Y to be }

end { \ the smaller of the two }

else bedin { / Y values passed into ¥
ClirYmin:=Ymaxi { / the procedure. }
ClirYmax:=Ymini { 7/ }

ends {7/ ¥

ends {procedure "ClipLimit"}

SPaded [FEERRERRRFRER AR R RR RN RN R AR AR AR RN RN R AR R AR RN RN RRER)
procedure ClipDraw(Xiys Y1y X2y Y2: real)i

e et g }
{ This procedure takes the endrpoints of a lines and clips it, The soft }
{ «c¢lir limits are the real global variables Clip¥mins ClipXmaxs Clip¥min ¥
{ and ClirYmax, These may be defined throudh the procedure ClirLimit, ¥
e T T L LT }
label
13
tvpe
Eddes= (LeftsRidht»TorsBottom)s {Possible edges to cross}
Out0OfBounds= set of Eddess {set of eddes crossed’
var
Dut+Outl0ut2:0utBfBoundss
Ky Y real?
e e T L L L L T e pupupupp }
procedure Code(Xs Y2 real? var Out: OutDfBounds)}
bedin {nested procedure "Code"}
Qut:=C13 {null set}
if x<ClipXmin then Out:=[left] {off left eddge?}
else if x*ClipXmax then Out:=[rightl; {off ridht edge?}
if y<ClipYmin then Out:=0ut+[bottom] {off the bottom?}
else if y:ClipYmax then Out:=0ut+[torl; {off the tor?}
ends {nested procedure "Code"}

182 Listings of Example Programs

bedin
Codel
Code(

K1Y 14+0utl
)(:r‘l':yﬂ'lt
L1

while (Outls<

)3
)3
) or (Out2<:L1) do b
1f (Outl#*0ut2)<>[1 then doto 13
if Outl<»[1 then Out:=0utl
else Out:=0utis
if left in Dut then bedin
LT+ (Y2-Y1)*(Clirmin-X
x:=Cl1PAﬂ1n1
end {left in
elese if ridht
ve=Y1l+(Y2-Y
x:=ClirXmaxs
end {right in
else if bottom
xe=Hl+(H2-R
yi=ClipYminsi
end {bottom in
glse if top in
wai=R 1+ (R2-H1)
yi=ClipYmaxi
endy {tor in Out??
if Out=0ut!l then bedin
Hli=x1 Y1
end {0ut=0uti?}
else begin
H21=x1 Y21=vi
erndi {else bedink
endis {while?
mouve(xlivi)s
line(x2yv2)1

A

=\
Y Nl

IV

Out?}
in Out then
J¥(ClirPimax-X

bedin
Y/

A
Ay

Out?}
in Out then bedin
Y¥(ClipYmin-Y¥1)/(Y2-

Dut?}
Qut then bedin
*#{(ClipYmax-¥1)/¢

\/")
P

=y
H

—/1

Code{x sy Qut2

1: ends
$paged {RFFHEEEEEXEXFXRREFXRRENENER
function RoundZ2(Ns M: reali Mode: R
o e e e
{ This function rounds "N" to the
{ function works only when the arg
R
const

epsilon= 1E-101
var

Rounded: reals

Nedative: booleans

bedin
Nedatives

(N0, 0) 3

if Nedative then bedin
N:i=abs(N)}
if Mode=Up then Mode:=Down

else if Mode=Down then Mode:=Ups

ends

Code(x sy sOuti)s

{body of procedure "ClipDraw"?}

{figure status of pPoint 1}

{fidure status of Point 27

{loop while either Point out of randel
{if intersection non-nully no linel

edin

{0ut is the non-empty onel

{it crosses the left edgel}
1)yi{adiust value of arpropriatelv}

{rnew x is left eddel

A
-

V)

i

{it crosses right eddel
yi{adJust value of v arprorriately?
{rew X is right edde?}

A
A

edde}
value of x appropriately’}
is bottom eddel

{it crosses the bottom
i{adiust
{new

\/1

Y

{it crosses the top edde’}
¥1)3{adJjust value of x appropriatelvl}
{new is top eddel

w
b

{redefine first end Point}

)3

{redefine second end Point}

the liness.?
so draw it}

{if we det to this Point:

{vivis completely visibles

{procedure "ClipDraw"}
FERFEFRRENERFRFRER R RN RR RN LR ERRARFEFRRRRHR T

pundTvre): reali

__ }
nearest "M"s according to "Mode", This }
ument is inw the range of MININT, ,MAXINT., 1}
___ }

{roundoff error fudde factor?

{temporary holding areal
{flag: "It is nedative?"?}
{body of "Round2"}

{is the number nedative®}

number?
000}

{work with a Positive
{if number is nedative:
{vivreverse up and down?}

Listings of Example Programs

case Mode of {should we round the number,..}
Down: Rounded:i=trunc(N/M)*M; {+veoleft on the number line?}
Up: bedin
Roundeds=N/M} {+yveridht on the number line??

if abs{Rounded-round(Rounded))repsilon then
Rournded:=(trunc(Rounded)+1,0)*M

else
Rounded:=trunc(Rounded)*M}
ends:
Near: Rounded:=trunc(N/M+M*0,5)%M; {yerto the nearest multiple??

endi {casel}
if Nedative then Rounded:s-Roundedi {reinstate the sign}
RourndZ:=Roundeds’ {assidn to function namel
ends {function "RoundZ"}

$rades {**}

procedure Grid(Xspacinds¥spacingsXlocYs»¥loc¥: real’ ¥madors Ymador: inteder;
Aminsizes Yminsize: real)s

{ o e e e o e e e e e e e
{ This pProcedure draws a d9rid on the Plotting surfaces with user-definahble
{ minor tick size, Parameters are as follows:
{ Xspacind: The distance between tick marks on the ¥ axis,
{ Ysrpacing: The distance between tick marks on the Y axis,
{ Klach: The X-value of the Y-axis,
{ ¥YlocK: The Y-value of the X-axis,
{ Kmador: The number of tick marks to de before drawing a mador tick
{ ¥Ymador: mark, If Mador=5, every fifth tick marKk will hbe mador.
{ Kminsize: The lendthy in world unitss of the ¥ minor tick marKs,
{ ¥Yminsize: The lendthy in world units, of the Y minor tick marks,
{ m o e e e e e o e e e e
var
Ky Yo reali
Kstarts¥Ystart:reals
HsemiMinsize: real’
YsemiMinsize: reali
Courter: inteders
bedin {tody of procedure "Grid"}

KeemiMinsizer=Xminsize*0,5)
YeemiMinsizes=Yminsize*0,5)
Ketart:=Round2(ClipXminXspPacing*¥madorDown) {round to next lower mador}
¥start:=Round2(Clir¥min¥spacing*YmadorDown) {round to next lower mador}
{===== Draw vertical mador ticKs ==s=szz=zzczs=zc=-=s=sczzczczsczzzos=smss=zssms=zzz
Ki=Hstarts
while X<=ClierXmax do hedin

ClipDraw(XsClirYminsXsClirYmax) s

Ki=X+Xspacing*Xmadori
ends
{===== Draw horizontal MmaJor tickKs ==sszcscso=s===ccczssczcozssscocoomss=cmmss==zoz
Yi=Ygtarts
while Y<=ClirY¥max do bedin

ClirDraw(ClipXminsYsClipXmax¥) 3

Yi=¥Y+Y¥spacing*¥Ymadors
ends

183

184 Listings of Example Programs

{===== Draw vertical minor tigKks =======5=====2=S=C==SC-SSSSS3S2IIS2I33Z==3== +
ni=rstart
Counter:=03
while X<=Clir¥max do hbedin
if Counter< >0 then bedin
Yi=Ystarts
while Y<=Clir¥Ymax do bedin
ClipDraw{¥,»¥-YSemiMinsize W ¥+YSemiMinsize)s
Yi=Y+Yspacingi
endy {while Y<=ClirYmax}
end’ {counters:07}
Counter:=(Counter+l) mod Xmadori
Hi=X+Xspacings
ends {while?}
{===== Draw horizontal minor ticks ZZETZTZZSCESSESSSSSSSSSSSSICSZSSISSSISSSSTSSS)
Ye=Vstarts
Counter:=03
while Y+«=Clier¥max do bedin
if Counter<:0 then bedin
Ke=Xstarti
while Hi=ClipXmax do bedin
ClirDraw(¥-XSemiMinsize Y yW+XSemiMinsizes¥)s
Hi=X+Hspacings
ends {while Hi=ClirpXmax?}
endi d{counters 07}
Courter:=(Counter+l) mod Ymadori
r=Y¥+Yspacings
endi {whilel}
endi {procedure "Grid"}
Spagded L RFRFEERRFFERRERERR R RR RN RRREFRRRRRR RN RN R R IR R RN R RN AR RN}

procedure IsotropicWindow(WxminsWxmax sMyminsWymax: real)s

A7
i

{ e e e e o e e e e e e e m }
{ This procedure allows the user to specify a window which forces the }
{ units to hbe isotropics is.e.s ¥ units are exactly as lond as Y units are. 3}
T }
const
ViewportLimitss= 4513 {mnemonic better than madic number?
tvre
LimitOrder= (Uxmin Uxmax JMyminVymax)i
LimitTvpe= arravy [LimitOrder] of reals
var
Pac: packed array [1++11 of chari { \ +iisundry variables
ITarrav: array [1.,1] of inteders { \ needed by the "ing_ws"
ViewPorts: LimitTvres { / procedures called to det
Error: inteders { / window limits.,
Wxrandes Wyrande: reals {¥/Y¥ rande in window (world) coordinates?}
Uxrandes Yvrande: reals {¥/Y rande in viewport {(virtuwal) coordinates?
Wratios Vratio: reali {aspect ratios of window and viewport}
Wxmid, Wymid: reali {¥/Y¥ midpoints of window?}
Wratio» VYWratio: reals {ratios of the ratios}

Multieplier: reals {the amount to multiely the semirande by}

Listings of Example Programs

bedin {procedure "IsotropicWindow"?}
ina_ws (ViewportLimits 10+0,4 PacsIarray ViewportsError)i {det viewport limits}
if Error{:0 then

writeln(‘Error ‘+Error:0s’ in procedure "Show".,’)}

Wxrandes=Wxmax-Wxmini {rande of X in desired window}
Wyrandes=Wymax-Wymini {rande of Y in desired window?}
Wratios=Wxrande/Wyrande? {aspect ratio of desired windowl}
Uxrande:=Viewport[Uxmaxl-Viewrort[Uxminls {rande of X in current viewrort?}
Uyrandes=Viewport{Vymaxl-Viewport[Uyminli {rande of Y in current viewrPort?}
Yratios=Uxrange/Yyrandes {aspect ratio of viewPort?
if abs{Yratio)<abs(Wratio) then hedin {rneed more room on top and bottom?}
Wymidz=Wymin+tWyrande*0,33 {Y midroint in desired window?}
WYratio:=abs(Wratio/WYratio)} {ratio of aspect ratios?
Multipliers=Wyrande*0,5*¥WWratios {what the ¥ rande must be extended bv}
Wymini=Wymid-Multipliers {riew minimum ¥ for windowl
Wymax:i=Wymid+Multirliers {new maximum ¥ for windowl
end
else hedin {need more room on rigdht and left?
Wxmids=Wxmin+Wxrange*0,53 ¥ midpoint in desired windowl
UWratios=ahs{(Uratio/Wratio)} {ratio of aspect ratios}
Multiplier:=Wxrande*0,5%UWratioi {what the ¥ rande must be extended by}
Wxmins=Wxmid-Multirlier? {new minimum X for window?
Wxmax:=Wxmid+Multiplieri {rnew maximum X for windowl}
ends {vratio<wratio?}
set_window(Wxmin Wxmax sWyminsWymax)i {set window with twiddled Parameters?
end} {procedure "IsotropicWindow"?
Gpagdet {RFEREEEEREERRRRRRRREERRRRRRRRERRRRFRRRRERRREE R RN RN R R R RN R RRRRRRRRRR)
bedin {body of prodram "IsoProg"}
dgrarhics.initi {initialize drarhics librarv}
displav_init(CrtsControlsError)s {initialize CRT?
if Error=0 then bedin {if no error occurred.,.s}
set_aspect(Ratio1)} {use the whole screen’}
while true do bedin {until the cows come home.,..}
write(#12)3 {clear the alrha screen}’
promet(‘¥mins ¥maxs Ymins ¥Ymax: ‘)% {give the user the Promet}
readln{¥mins¥maxsYminsYmax): {read his/her answers?}
set_line_stvle(3)s {invoke dashed line stvlel}
Frames {draw dashed frame?}
IsotropicWindow(XminsXmax s¥Ymins¥Ymax)i {invoke isotropic units?
ClipLimit (XminsXmax»¥Ymin¥max)i {set soft clip limits to user’s wvalues}
set_line_style(l)} {invoke solid lines?
Grid(1s1+040:1+14151)3 {show isotropic drid of requested areal
promPt{ ‘Press the space bar to g0 on.’)} {user’s continuation Promptl}
read(KkevhoardsCharacter)i {wait until user savs to g0 on}
clear_displavi {clear drarhics screen’
endi {while}
endi {Error=07} {end of conditional codel
grarhics.termi {termivate draphics librarv}

erid, {prodram "IsoProg"}

185

186 Listings of Example Programs

JustProg

prodram JustProd{output)i

import dgl_libyddl_inas {det drarhics routines)

const
CrtAddr= 33 {address of internal CRT}
ControlWord= 03 {device controls O for CRT}

tvpe
HdustifyTypes= (LeftsHCenteredsRight)3 {horizontal Justification}
YdustifyTvpes (Bottom WCenteredsTor)i {vertical Justification?}
AndTyres= (DegsRadGrad)i {used bv procedure "LabelDirection"}
StrZ55= stringl[23511 {for the procedure "Glahel"}

var
ErrorReturn: intedgers {variable for initialization outcomel
Hiust: HlustifyTypes {horizontal Justification variahble}
Yiust: YdustifyTypes {vertical Justification variablel}
I: inteders {for the strwrite statement}
Strng: str2h5; {labelled text holder}
CharWidthsCharHeidht: reals { \ These are glohal variables }
HJustification: HlustifyTyres { N needed by the LabelJustify/ ¥
VJustification: VdustifyTvres { / LabelDirection/CharSize }
CharTheta: reals { / series of procedures. }

$include ‘DGLPRG:ConvVtol’$ {needed by procedure "CharSize"?}

$Paged (RN R RER R R RN R R RN R RN RN N RN R R R R R RN R RN NN RE RN RN RH]}
procedure Frames

Lo e o e - ¥
{ This procedure draws a frame around the current window limits. }
R e }
const
WindowLimits= 43503 {mnemonic better than madic number}
type
LimitOrder= (Kmivy Xmaxs YminsYmax)s
LimitType= array [LimitOrder]l of reals
uvar
Pac: packed array [1..1] of chars { \ These are the sundries 3}
larray: array [1.,11 of inteder: { \ needed by the call to ¥
Window: LimitTvres { / the DGL procedure }
Error: integers { /7 "ina_ws", }
bedin {body of procedure "Frame"}

ing_ws{WindowlLimits 0,04 PacslarrayWindows+Error)3

if Error=0 then bedin
move(WindowlXmind yWindowl¥Yminl) i {move to lower left corner}
line(WindowlXminlWindowlYmax1) {draw to ueper left corner}
line(WindowlXmax] sWindowl Ymax1) {draw to upper right corner}
line(WindowlXmax]l sWindowlYmind) i {draw to lower right corner?
line(WindowlXminl sWindowlYminl) i {draw to lower left corner}

end {Error=07}

else writeln(’Error ‘+Error:0s+’ occurred in "Frame"’)}

endi {procedure "Frame"} {return}

Listings of Example Programs 187

$Paded {FFEFERERERERRNNENR R R FRRRRRERERRRRERARRRRRRERRR RN RN R AR RRERNR]
procedure CharBize(Heidhts AspectRatio: real)s

{ This procedure defines character cell size and the Puts the Width and }
{ Height values into dlobal variables for later use., The arduments rassed }
{ in are the height of the character cell in VIRTUAL coordinatess and the }
{ aspect ratio of the character cell, The values for the window limits }
{ may be anvthingi they are taKen into account and do not affect the size }
{ of the characterss since they are defined in virtual coordinates. This ¥
{ procedures along with Lord and Ldirs define global variables for use by ¥
{ Glabel. }
{ e e e e e e e = ¥
var

Width: realsi {temporary spot for width?

KOy YO: reals {00 (virtual) in world?}

K1y Y1 real’ {11 (virtual) in world}
bedin {body of procedure "CharSize"?}
ConvertVirtualToWorld(Q,0,X0,Y0)3 {convert 00 in virtual to world}
ConvertVirtualToWorld(1l+1sX1,¥1) 3 {convert 11 in virtual to world}
Heidht:=Height*(Y1-Y0)} {convert heidht in virtual to world}
Width:=Height*AspectRatio* (¥1-X0)/{(¥1-¥0)35 {convert width in virtual to world}
set_char_size(WidthsHeidht)3 {invoke the Parameters’
ends {procedure "CharSize"}

SPages {FERREEEREERERRRNRER AR RRRERRFHRRE IR RN R R RN R R ERRRRRRRRNH)
procedure LabelDirection(Direction: reali Units: AndTrpe)s

T }
{ This procedure is used in condunction with LabelOridiny CharSize and ¥
{ Glabel, It sets the labelling direction to be useds and rPlaces the }
{ direction into a dlobal variable so Glabel can use it. b
et R L D }
const

Ded_prer_rad= 57,2857795131F {180/pi: for converting dedrees to radians}
Grad_per_rad= B3,6619772368% {200/ei: for convertind drads to radians}
bedin {procedure "LabelDirection"?
case Units of
Ded: Direction:=Direction/Ded_per_rad’ {dedrees to radians}?
Rad: 3 {correct units alreadv?
Grad: Direction:=Direction/Grad_per.rad} {drads to radians?
endi {casel}

CharTheta:=Directioni {pPut into a dlobal variable}
set_text_rot(cos(CharTheta)ssin(CharTheta))s {invoke the new text direction}
endi {procedure "LabelDirection"}

$Paded [EFERFERFREERFRRERRRRERFRRRERRRRRRE AR RFRRER RN RN RN R X R RR R RN RERRERRR)
procedure LabelJustify(HJust: HJustifyTyeped VYdust: WdustifyTveeli

A T e }
{ This procedure is used in condunction with procedures CharBSizes }
{ LabelDirections and Glabel, This Just puts a value into dlobal +
{ wvariables which will ke subsequently used by Glabel, +
et e D L ¥
bedin {procedure "LabelJustify"}

Hiustification:=HJust}i
Ydustification:=WJust}
endi {procedure "LabelJdustify"}

188 Listings of Example Programs

FPaged LR ERERERRFRRN R R RN RN RN R RN AR R RN RN RN R RN R R R AR AR RN AR RN HFR T
function Atan(¥s ¥: real): real:

(R }
{ This function returns the value of the arctandent of Y/¥: Placing it ¥
{ in the correct quadrant. If ¥ and ¥ are both zeros the result is zero, 2}
R e e gy gy g ¥
const

Pi= 3.141592653591 {pil}
bedin {function "Atan"}

if X=0,0 then Atan:=(Pi/Z2+Pi*ord(Y<0,0)) *ord (¥Y<30.,0)

else Atanz=arctan(Y/X)+Pi%ord (K{0,Q)+2%Pi%ord((Xx0,0) and (Y<0,0)) 3

ends {function "Atan"}

FPATEE RN XA RRERRA RN R AR R R AR R R R R R R AR AR RN RN AR R R R RN RN RN R RN RN RN FENRR)
procedure Glabel(Text: Str235)3

{ This procedure labels a string of text at the current Pen Pasition. ¥
{ It takes into account the current label direction (set by Procedure }
{ “LabelDirection"» the current character size (set by procedure ¥
{ "CharSize"), and the current label Justification (set by procedure }
{ "Labeldustifw»"), }
R gy }
const
CharSizeCode= 2301 {mnemonic hetter thaw magic number}
CurrentPosition= 2394 {ditto}
tvype
Positions= (K3
PositionTvpe= array [Positions] of reals
CharAttributess= (WidthsHeighth)3
CharAttrTvpes= array [CharAttributes] of reals
var
Chars: inteder:
Charsize: CharAttrTypes
LensHeidht: reals {lendth and height of character string}
DxsDvs reals
RsThetas reals {for rectandgular-to-polar conversion}
Pac: racked array [1,41] of chars { \ These are the }
Tarrav: array [1.+4+11 of inteders { \ sundry items }
Positian: PositionTvprel { / needed for the }
Error: inteders { / call to "ina_ws"}
bedin {procedure "Glabel"}
ina_ws(CharSizeCode0s0+2+PacsIarraysCharsizesError)s {d9et Pen pPosition’}
if Error<>0 then writeln(’Error’+Error:0,s’ in "Glahel",’)}
Chars:=strlen{text)s
Len:=CharsizelWidthl*(7%Chars+2%{(Chars-1))/93 {lendth minus inter-char dar}
Height:=CharsizelHeighthl*B/15} {height minus inter-line dar}
Dx:=Len*(-ord(Hdustification)/2)3
Dy:=Height*(-ord(VJustificatiaon)/2)3
Rei=sart{Dx*Dx+Dv*Dv) { \ Convert to polar coordinates so 1}
Theta:=Atan(DvDx) 3 { / rotation is easv. ¥
Theta:=Theta+CharTheta} {add the LabelDirection angle}
Dx:i=R#¥cos(Theta)3 { \ Convert R and the new Theta back 2}
Dyi=z=R¥sin(Theta)s { / to rectandular coodinates, ¥
ina.ws(CurrentPosition+0s0s2+Pacslarrav+PositionsError)s {det Pen pPosition}

if Error=0 then bedin
move (Position[X1+Dx +Positionl[¥1+Dv)i {move to the new starting point}
dgtext(text)s

end {Error=07}

else writeln(’Error/sError:0y’ in "Glabel",)3

ends {procedure "Glatel"}

$rade$
bedin
drarhics_initi

displav_init(CrtAddrsControlWordsErrorReturn)s

if ErrorReturn=0 then bedin
set.aspect(311,389)
set_window(-14245+-0,592.,5)3
Frames
Char8ize(0,03+0.6)3
LabelDirection(Q,Ded) i

LabelJustify(HCenteredsTor) 3

for Hiust:=Left to Ridght do
Strng:i="'"}
strwrite(Strngsl I +Hdust) s
movelord{HJust)+2.4)3
Glabel(Strng)j

endi {for Hiust}

Labels on the left edge

Labeldustifv(Left VCentered);

for Vjust:=Tor downto Bottom do bedin
Strng:='"3
strwrite(Strngs1l,IViust)
move(-0,90rd(Viust))i
Glabel(Strng)s

endi {for VYiust}

Labels ("TEST") with different

CharSize(0,064+0,6)3

for Hiust:=Left to Right do bedin
faor Vjust:=Torp downto Bottom

Labeldustify(Hiust »Wiust) i

bedin

move(ord(HJjust)+0,030rd{(Viust)+0,
line(ord(HJiust)-0,030rd(Viust)-0,03)3 { A\
move{ord(Hiust)-0,030rd (Viust)+0,03)3 { /
line{ord{HJjust)+0.,030rd (Yiust)-0,03)3

move (ord{(HJust)sord(Yiust))i
Glabel (/TEST') 3
endi {for Viust}
endi {for Hiust}
endi {ErrorReturn=07}
drarhics_termi
end,

Labels at the top ==s=======z=z===

do bedin

Listings of Example Programs

LRERRERRRFEERREREERERREERRERERRFERRFRFRRRRRERER AR RERHFRAF RN RN RNER)

{body of prodram "JustProg"}
{initialize the drarhics svstem?}
{which output device?}

{output device initialization OK?}
{use the whole screen}’

{scale the window for the data}

{draw a frame around the screenl’
{width=3% screen widthi asp, ratio=,8}
{horizontal labels?}
{lakel’s reference pPoint: top middle}
{horizontal loor}

{null the stringd so nothing left over?
{convert enumerated tvpe to stringl
{move to the arpropriate Placel}

{label the string}

{label’s reference Point: left middle}
{vertical loor}

{rnull the string so nothing left over}
{convert enumerated tvyrpe to string}
{move to the appropriate rlace?’

{label the string}

Justifications
{characters a bit bigger?
{horizontal loor}

{vertical loor}

{set label Justification?}
{\ }
Make the "x" at }
the appropriate ¥

{ / place. }
{move to label’s startind position}
{label the text}

03)3

{terminate the draphics Packadel
{prodram "JustProg"}

189

190 Listings of Example Programs

LdirProg

prodram LdirProds {program name same as file mamel
import dgl_lib} {access the necessary procedures}
const
Crt= 33 {device address of drarphics raster’
Control= 03 {device control word’ ignored for CRT}
typPe
AndTvpe= (DedsRadsGrad)i {used by procedure LakelDirection}
var
Error: integers {displav_init return variablei O = ok}
IvJd: inteders {loop control variable and seare}
Strnd: strindg[501} {stringd to label?l
CharTheta: reali {global variable for label direction}

FPaded [EEEEERERREEER RN E R R AR R RN R RN RN R RN R R R R RN R AR R R R RN AR AR R R AR H)
procedure LabkelDirection(Direction: real’t Units: AndgTrre)s

R et T i U ¥
{ This procedure is used in condunction with LakelOridins CharSize and }
{ Glabkel. It sets the labelling direction to be used, and rplaces the }
{ direction into a d9lobkal variable so Glakel can use it. }
e L L T T T ey }
const

Deg.per_rad= 57,2957795131% {1B0/pi: for converting dedrees to radians?
Grad.rer_rad= 63,6619772368+% {Z00/pi: for converting drads to radians?
bedin {procedure "LabelDirection"}?}
case Units of
Deg: Direction:=Direction/Ded_per_radj {dedrees to radians}
Rad: 3 {correct units alreadvy?}
Grad: Directions=Direction/Grad_rer_rads {drads to radians?}
endi {casel}

CharTheta:=Direction’ {pPut into a 9dlobal variable’}
set_text_rot(cos(CharTheta)sin(CharTheta))} {invoKke the new text directionl}
ends {procedure "LabelDirection"}
FPagded {HEEEREEEERERERE R RN RN R AR R AR R R IR AR R RN RN E RN RN RN RN FRR AN R AR RFHFH)
bedin {tody of program "LdirProg"}
drarhics_init} {initialize drarhics librarv}
display_init{(CrtsControl+Error); {initialize CRT}
if Error=0 then bedin {if no error occurred,.,}
set.aspect{(311,389)3 {use the whole screen}
setowindow(-1s14-1+1)3 {define appropriate window}
set_char.size{0,0540,08)3% {set the size for the characters}
for I:=0 to 35 do bedin {every ten dedrees’}
Strngr='"3 {empty the stringl
strurite(strng i sJyI[#10:0)3 {convert the loorp variable to dedrees)
Strngizs’ceemean ‘+8trnd+’ deg’; {attach prefix and suffix’
LabelDirection{(I*10,Ded) s {specify label direction}
moue(0,0)3 {move toc the center of the screen’
dgtext(Strng); {label the text}

endi {for I}
endy {Error=07}»
drarhics.termi {terminate drarhics librarv}
end, {prodram "LdirProg"}

Listings of Example Programs

LOCATOR

$debudé
prodram Test(outPut)i
import dgl_varssdgl_tvpressddl_libsddl_ prolysddl_inai

tvpe
Commands= 0,.83 {nine commands total}
RealArray= array [1.,3]1 of reali
const
FS= chr(28)3 {right arrow}
BS= chr(8)i {left arrow or bacKksrpacel}
Us= chr(31)} {up arrowl
LF= chr(l0)3 {down arrow}
CrR= chr(13)3 {carriage return?’
MinX= 03 {minimum X value for screenl}
MinY= 03 {minimum Y value for screen?’
MaxX= 5113 {maximum ¥ value for screen’
MaxY¥= 3893 {maximum Y value for screen’
Arange= MaxX-MinXi {total rande of X}
Yrandes= MaxY-MinYi {total rande of Y}
LocatorAddress= 23 {2 for Knobs706 for 91117}
var
Error.nums inteders {error return variablel}
I:+TempInt: inteders {utility variables?}
ButtonValue: inteders {which button selected?}
KinsYin: reali {location of diditized Point}
Xlasts¥last: reals {last diditized Point}
CharWidthsCharHeidght: real} {char size in world coords}
Done: booleans {are we supposed to auit?}
NewlLines: booleans {start new line?}
TempString: GstringzZs33 {utility variable?}
EchoSelectsEchoSelector: 04,93 {menu selection}
MenuTor: reali
CellWidth: reali {width of menu spaces?}
Command: Commands i {which command selected?}

Fradet {HEFREEREERERRERRERRER AR R AR RN AR R RN AR RN RR RN R RRRRERRRR)
procedure DrawMenus

var
I: inteders {looP-control variable?
Ylabel: reals {Y position of entree label}

Yarrav: RealArravi

191

192 Listings of Example Programs

A L T T I }
procedure MenuCell{(I:inteder)s
var
TemprPitch: reals {temporary variable?
Klabel: reals X position of entree labell}
Harravs: RealArravi X positions of entree celll}
begin {procedure MenuCell}
case I of
O: bedin
TempString:='STOP'} {label text}
Karravy[11:=03% A\ }
Harrav[2]:=2#CellWidth} { A\ ¥
Harrav[31:=2#Celllidths { » X positions for box ¥
Harray[41:i=01 { 7/ }
Harray[Dl:i=01 {7/ ¥
Hlabel:=MinX+CellWidth-strlen(TempString)*¥CharWidth/21
ends
1v+10: bedin
TempPitch:=CellWidth*Ij {temporary shorthand variablel}
Warrav[1l]l:=CellWidth+TempPitchs {\ ¥
Harrav[2]:=2%CellWidth+TempPitchs { A ¥
Karrav[31:=2#Celllidth+TenrPitchi { » W opositions for box ¥
Karrav[41:=CellWidth+TempPitchsi { 7/ }
Karrav[Sl:=CellWidth+TenrPitchi {7/ }
TempStrings=' '} {label text}
if I<=8 then strurite(TempString i sTempIntIsl)s
Hlabel:=Xarrav[11+CellWidth/Z+strlen(TemprString)*Charidth/ 2}
end
ends {case I of}
rolvline(S+HarravsYarray)i {draw perimeter of celll}
move(ilabels¥label)s {move to the right place}
dtext(TempString)s {labkel the text?
ends {procedure MenuCell?}
T T e e e T }
bedin {procedure DrawMenul
Yarray[1l:=MinY¥i {\ }
Yarrav[21:=MinY} { A\ }
Yarravy[3l:=MenuTopr3 { ¥ values for box }
Yarrav[4l:=MenuTopr} { 7/ }
Yarray[Sli=Min¥} {7/ ¥
Ylabel:=MinY+(MenuTor-Min¥)/2-CharHeidght/21} {Y position of labell}
for IT:=0 to 10 do MenuCell(I)3 {do all the entree cells?}

endi {procedure DrawMenu}
$PAgRE {FEFEREFRFEFRFRF R RN RN R R R RN R RN RN RN AR RN RN R R RN R R E AR R R RRRRRF R)
function CheckMenu{Xin:real):Commandss
bedin {function CheckMenul
if Xin<Z%CellWidth then CheckMenu:i=0 X ooutside of menu?}
else begin
TempInti=trunc((Xin-CellWidth)/CellWidth)s {which sell chosen?}
if TempInt>8 then CheckMenu:=Command
else CheckMenu:i=TempPInt
end
ends {function CheckMenu 7

Listings of Example Programs

FPATEE (R R R R R R R R R R RN R RN R R R R R AR R AR R R R R RN RN R RN RN RERAF ¥

bedin {Main prodram’

drarhics_initi {initialize the drarhics svstem}
display_init (30 +Error_Num)i {which output device?}

if Error.Num<>0 then hedin {output devic initialization OK?}

writeln('I failed to initialize the diseplay.’)}
writeln(‘Error number ‘sError_Num:2:’ was returned,’)}
end {if Error_Num< >0}
else bedin
LOCATOR..init(lLocatorAddressyError_Num)s
if Error_Num<:0 then bedin
writeln(’l failed to initialize the locator,’)}
writeln(’Error number “sError_Num:Z2s’ was returned,’)}
end {if Error_Num<:0}

else hedin {No errors so far}

set.aspect{(311,389)3 {use whole screen’
set_window{(0,511,0,389)3 {scale window for datal
CharWidth:=0,035%5113 {char width: 3.5% of screen width}
CharHeight:=0,05%389; {char height: 3% of screen height}
set.char_size(CharWidth:CharHeidht)s{install character sizel}
MenuTop:=Yrande/13} {menu is 1/13 the total screen heightl}
CellWidth:=Xrange/123 {each entree cell 1/12 screen width}
DrawMenus {draw the menu}
NewLine:s=trues {ves» we are starting a new line}
EchoSelect:=43 {start Prodram with default command?
Command:=43 {ditto}
Dones=falses {nos we’'re not done vet}
rereat

if NewlLine then {startingd a new line?}

EchoBSelector:=2
else

EchoSelector:=EchoSelect?
await_locator(EchoSelector:ButtonValuesXin¥in)s

if Yin<MenuTor then bedin {user choose menu oPtion?}
NewlLine:=trues {start a new line next timel
Command:=CheckMenu(Xin) 3 {determine menu selection}’
case Command of {which command}
O: Dones=trues {vesy we’re dovne with the prodram?
1: EchoSelect:=13 {\ }
2: EchoSelect:=234 { A\ ¥
3: EchoSelect:=3} { \ ¥
4: EchoSelect:=43 { \ Select the appropriate %
St EchoSelect:=51 { / EchoSelector. }
G: EchoSelect:=G63 { / }
7: EchoSelect:=73 { / ¥
B: EchoSelect:=81 {7/ ¥
end A{casel
end A{if?}
else bedin {not a menu selection}
if Newline then bedin {start a new line}
NewLine:=falses {now we’'re in the middle of a linel
set.echo_pros{Xin¥Yin)i {move the drarhics cursor}
move (KinsYin)i {cause line-drawing to start therel
Ylasti=Yini {remember the last ¥..+}
Klasts=Xinj {+vevand the last Y}

end

193

194 Listings of Example Programs

else bedin
set_echo_ros(Xins¥in)3
if (Win=Xlast) and
else bedin
case EchoSelect of
1oe7: line{XinsYin)i
8: bedin
line(
Time(Xins¥in) 3
line(Xins¥last)i
line(Xlasts¥last)
NewlLine:=trues
erd
otherwise
ends {case EchoSelect of?}
nlasta=Xing
Ylasti=Yins
enid
endj
endj
until Dones
locator.terms
displavy_terms

Klast»¥in)s

r
\,

(Yin=Ylast)

{move the drarhics cursor’
then NewLine:=true

{draw a line}

)'(H.}

{remember the last
{vvvand the last Y}

{are we done vet?)
{terminate the locator}
{terminate the displav?}

end? {Error trar’
end i
dgrarhics_terms {terminate the drarhics svstem?}
end, {Main Prodram}
LogPlot
prodram LogPlot{kevboardroutrut)s
import dgl_libs
const
Kmins= -3 { ¥
Kmax= 24 { \ Decade minima }
Ymin= 03 { / and maxima. +
Ymax= 33 {7/ }
Cri= 33 {device address of drarhics raster?
Control= 03 {device control word}i idgnored for CRT?
type
RDataTvre= array [1,,131 of reals
const
Xualues= RDataTypel0,0003 00,0009, 0,004y 0,008y 0,01y 0,07y 0,224 0.5
1.2y 2.6+ 8.9, 18,6+ 34+ 56 9711
Yvaluess= RDataTypell.1s 4,5y 13,38y 45,9y 60,33y 130.7 346+ GO0,
899, 933, 903 841, 720 503, 39011
var
Error: inteders {display_init return variable’ O = oKk}
Decade: inteder:
Unitsy UpperLimit: inteders
Ky Yo real

I: inteders

Listings of Example Programs

FPATEE [HEEREERREREERRE RN RN R R R RE R R R R RE AR R ERRERRRE R RN R R RN RN RN RRNFRHR)
function Lodl0O(X: real): reals

Rt T ¥
{ This function returns the lodarithm to the hase tev of a number, }
T ettt iy g }
const

Log_10= 2.302585092991 {lod to the base e of 10}
bedin {function "LoglO"}
LoglOr=1n(X)/Log_103%
ends {function "LoglQ"}
FPaged (R EREREE R RE R R R RN RN RN R R R R RN R R RN RR R R RN RN R RR N RN SRR R RN R R NR T
begin {body of Pprodram "LogPlot"}
drarhics_inits {initialize the grarhics svstem}

displav_init(CrtsControlsError)i
if Error=0 then bedin
set_aspect(311,389);
setowindow(XminsXmax +Ymins¥max) s
{===== Draw and label logarithmic ¥-axis grid ======z===z==cz=z=z=zzz=z==z=z=z==z==z:z}
for Decade:=Xmin to Xmax do hedin {one decade equals one mantissa cvclel}
if Decade=Xmax then UpperLimit:=1
else UpperLimit:=93
for Units:=1 to UpperLimit do bedin {do 2-9 if not last cvcle}
Ki=Decade+Logl0(Units)
movel(XsYmin) i
lime(Xs¥max) s
endd {for units}
endi {for decade}
{===== Draw and label lodarithmic Y-axis dgrid =s===s=z=zz=z=z=z=z=z=z===z=z=z=z=z=z==z==zz}
for Decade:=Ymin to Ymax do bedin {one decade equals one mantissa cvecle?
if Decade=Ymax thern UrperLimit:=1
else UpperLimit:=93
for Units:=1 to UpperLimit do bedin {do 2-9 if not last cvecle}
¥Yi=Decade+Logl0O(Units)}
move(AminsY)i
line(Xmax V)i
endy {for units?
endi {for decade}
{===== Draw the logarithmic data CUIMYp S=STZ====coo=cSSSssSs=sssssssszzzzzox})
for I:=1 to 1S do bedin
if I=1 then move(Lodgl0(XValueslI1)Logl0(YvalueslI1))
else line{Logi0(XValues[I1)sLogi0(Yualues[I1))3}
endi {for i}
ends {Error=07} {end of conditional codel}
drarhics.terms {terminate draprhics librarv}
end. {prodram "LodgPlot">}

195

196 Listings of Example Programs

MarkrProg

prodram MarKrProd(outrPut)s
import dgl_libsdgl_inas

canst
CrtAddr= 3%
ControlWord= 03
type
MarKerNumTyre= array [0,.4]1 of intederi
DataTvpres= array [0,,101 of inteders
const
MarkerNumber= MarKerNumTyrel2:3:6+8+1313
Data= DataTveel0+2:+1 44434314593 +4,613
var
ErrorReturn: inteders
Iy J: inteders
FPagEE R AENFAERE AR RN ERFE R RN RN R R RN ER RN AR R AR RR AR AR ERE R R AR RN EH)
bedin {prodram "MarkrProg"}

dgrarhics_init}
displav_init(CrtAddr.ControlWordsErrorReturn) i
if ErrorReturn=0 then bedin
set_aspect(311,389)1
setwindow(O,10,0,10) 3%
moue(0+0)5 line(0s10)3% line(10410)3F 1ine(10,0)35 line(0,0)3
for I:=0 to 4 do bedin
for Ji=0 to 10 do bedin
if Jo:0 then marker{(MarkerNumber[I1)3
if J=0 then move(JsDatalJl+I)
else line{(JsDatalJl+I)s
endi {for J}
endy {for i}
ends {ErrorReturn=07}
drarhics_term}
evd., {progdgram "MarKrProg"?}

Listings of Example Programs

PLineProg

prodram PLineProdg{outprut)j
import dgl_libsdgl_inai

const
CrtAddr= 33
ControlWord= 03
type
RDataType= array [0,,10] of reals
const
Kualues= RDataTyprel0s1+2+3+43546+7+8+99+101%
Yuvalues= RDataTvrel0s2+14+4+,3+3+1:5+3:4+613
var
ErrorReturn: inteder:
K ¥ RDataTvprei
SPATES (R EEFEEEREFEREFR R AR R R R R R AR AR R RRERE AR R R R AR R R R RRRRRR)
begin {prodgram "PLineProg"}

drarhics_init} .
displav_init{(CrtAddrsControlWordsErrorReturn)i
if ErrorReturn=0 then bedin
set.asprect{(211,389);
set.window(0s10,0,10)73
move(0s0)3 line(0,10)§F line(10,10)% line(10+s0)% line(0,0)3
Ke=Xvaluesi Y:=Yvaluessi
Polylime(ilsXs¥)3
endi {ErrorReturn=07}
drarhics_termi
end, {program "PLineProg"}

197

198 Listings of Example Programs

PolyProg

prodram PolvyProg(output)s {prodram name same as file name?l
import
dgl_libsdgl_tvpessdgl_poly dgl_inai {access the necessary Procedures’}
const
MaxPoints= 273 {rnumber of Points in arravs}
Crt= 33 {device address of drarhics raster?
Control= 03 {device control wordj ignored for CRT}
type
Reals= array [1..MaxPoints] of reals {to contain X and Y valuesy)
Word= -32768..,327673 {16-bit word}
Intederss array [1,.Maxpoints] of Wordj {to contain op., selectors}
const
Kvalues= Realsl 1.5y 2.5+ 245 1.,54-1.,59-2,5+-2,5+-1,5+ A{Octadan}
“Z245 205 2.54-2454-2430 {Box?}
~205y-0,53-2.53-5,04-4,0 {Left leg}’
2053 403y 245 5.0 4,0, {Right legl
S0 8y-140y 1,0y 0,313 {Nozzle}
Yvalues= Reals[1.0y 2,03 3.0 4,0y 4,0y 340y 240y 140y {0Octadgon?
1.0 1403-2.00-2,04 1,0, {Box?}
“2 0400y 0 0y-4,04-4,0 {Left ledg}
S 00400y 004 0y-d.0y {Ridght ledg}
S200-34004-3,04-2,013% {Nozzle?}
OrCodes= IntedersiZ2+1 1141914151 {0ctadon?}
2alaia101 {Box?¥
2yl 192901 {Ridht led}
21419291 {Left legl
21914175 {Npzzle?}
var
Error: inteders {displav_init return variablei O = ok}
I: inteders {loor control variablel}
Lemis Lem¥: Realss {50 we can pass it to "polvdon"}
DrSelectors: Intederss {ditto}
Points: inteders {ditto}
FPagded [EFEXEEFERFERFRRENR R AR RE RN RN RN R RFRRR RSN R RN RN R R AR ERRE AR ER RN RR]

bedin

Lemd:=Xvaluess
LemY:=Yvaluesh
OrSelectors:=0rCodess
Points:=MaxPointsi

{bodv of prodram
{ \V Put into
£ it can
{ / reference
{Put constant

arravy

"PplvProg"?}
variable arrav
be rpassed by
into the DGL proc.?
into an

so
¥

variable?

draprhics_inits

displav_init(CrtsControlsError)}

if Error=0 then bedin
set_aspect(511,389) 1
set_window(-13+13+-10,10)13

polvdon{Points:LemXsLemY OrSelectors) s

endi {Error=07}
drarhics_term}

end. {prodram "PolvProg"?}

{initialize drarhics librarv?}
{initialize CRT?

{if no errar occcurred..,?

{use the whole screen?}

{invoke isotroric units?}
{draw the lines?}

{end of conditional code?
{termivate drarhics librarv?}
{end of prodram?

SinAspect

prodram SinAspect{outrPut)i
import dgl_lib}

const
CrtAddr= 33
ControlWord= 03
var
ErrorReturn: inteders
K inteders’
i reali

$include ‘DGLPRG:DataPoint’%$

Listings of Example Programs

{get grarhics routines}

{address of internal CRT}
{device controls O for CRT}

{variable for initialization outcomel

{function: vi=fi{x) }

EPaded [REEERFERERFERRFFRRFRER AR RF R A RN RRR R R AR LEREEEER R R EREERRERERRR)

bedin
drarhics_inits

{body of Pprodram "SinAsrect"}
{initialize the drarhics svstem}

displav_init(CrtAddr+ControlWordsErrorReturn)i A{which output device?}

if ErrorReturn=0 then bedin
set_aspect{(311,3898)3
set_window(Q,100,0,16+,0,18)3
for Ke=1 to 100 do bedin
Yi=DataPoint(X)3
if X=1 then move(X,Y)
else line(X»¥)
endd {for X:=1 to 100}
ends {ErrorReturn=07}
drarhics_terms
end,

{output device initialization OK?}
{use the whole screen}

{scale the window for the datal}
{100 Points totall

{det a point from the function}
{move to the first Points..}
{+ivand draw to all the rest}

{terminate the drarhics packadel}
{prodgram "SinAsrect"}

199

200 Listings of Example Programs

SinAxesl

prodram SinAxesl(outeut)s

import dgl_libs ddl_inqj * {det drarphics routines’}

const
CrtAddr= 31 {address of intermal CRTZ}
ControlWord= 0} {device controlsy O for CRT}

type
RoundTvres= (Upy Dowriy Near)i {used by procedure Round2}

var
CharWidth: reals {width of char in world coords?
CharHeight: reals {height of char in world coords?
Text: stringl2013 {temporary holding place for text}
ErrorReturn: inteders {variable for initialization outcomel
W inteders
Y reals

$include ‘DGLPRG:DataPoint’$ {function: vi=fix) %}

$Paged [EEEEEFERRRFRR R R RN R RN R AR RN RN R R R R R AN RN AR AR EE N RN AR R R RN RN,)
function RoundZ(N, M: reali Mode: RoundTyee): reals

{ This function rounds "N" to the nearest "M"s accordingd to "Mode". This ¥
{ function works only when the ardument 15 in the rande of MININT, .MAXINT., 1}

e m e e e e e e e ——— ¥
const
epsilons= 1E-10% {roundoff error fudge factor?}
uyar
Rounded: reals {temporary holding area’l
Nedative: boolean s {fladg: "It is nedative?"}
bedin {body of "Round2"}
Nedative:=(N<O,0)1 {is the number nedative?}
if Negative then bedin
Ni=abs(N) {work with a positive number}
if Mode=Upr then Mode:=Down {if number is nedativey ..}
else if Mode=Down then Mode:=Upj {+vsreverse up and down}
ends3
case Mode of {eshould we round the number.,.?}
Down: Rounded:=trunc(N/M)*M; {vvoleft on the number line?}
Ur: bedin
Rounded:=N/M3 {vesridght on the number line?}

if abs{(Rounded-round(Rounded)):epsilaon then
Founded:=(trunc(Rounded)+1,0)*M

else
Foundeds=trunc{Rounded)*M3
endj
Near: Rounded:=trunc(N/M+M*0,5)%M; {vvvto the nearest multirle?}
ends {casel
if Negative then Rounded:=-Rounded3 {reinstate the sign}
RoundZ:=Rounded: {assidgn to function nmamel}

endj {function "Round2"}

Listings of Example Programs

SPaded (HEEEERFERRERFRRRREEFRRRRR R AR RRRR R R AR RF R AR RRRERRRRER R AN RRRRER R
procedure Xaxis(SpacindsLocationsXminXmax: reals
Mador: inteders
MajsizesMinsize: real)s

e T T }
{ This procedure draws an X¥-axis at any intersection Point on the Plotting 1}
{ surface, Parameters are as follows: }
{ Spacing: The distance between tick marKks on the axis, }
{ Location: The Y-value of the X-axis. ¥
{ ¥mins¥max: The left and right ends of the X-axiss respectivelvy, }
{ Mador: The number of tick marks to de before drawingd a mador tick }
{ mark, If Mador=5, every fifth ticKk mark will be mador. +
{ Madsize: The lendgths in current unitss of the mador tick marKks. }
{ Minsize: The lendths in current unitss of the minor tick marks, +
R e }
var

i reals {current X of tick marks?}

SemiMinsize: reali {half of minor tick sizel}

SemiMadsize: reals {half of maJor tick sizel}

Counter: inteders {keers track of whew to do mador ticks?}
begin {body of procedure "Xaxis"}

move(XminsLocation)s
live(XmaxLocation)i
SemiMinsize:=Minsize*0,53
SemiMadsize:=Madsize*0,53

Y.

Hi=RoundZ(Xmins Spacing*MadorDown)i

Counter:=01
while X<=Xmax do bedin
if Counter=0 then bedin

move(XiLocation-SemiMajsize)s
line(XiLocation+SemiMadsize) s
end {Counter=07}
else bedin
move(XsLocation-SemiMinsize)s
line(XsLocation+SemiMinsize)s
endy A{else bedgin}
Counter:=(Counter+i)
Ki=X+Spacingi
endi d{while}
endi

mod Madori

{left end of the x-axis}

{draw x-axis}

{half of every tick mark needs to.s}
{+vvibe on each side of the axis}

{round start point to next lower mador?
{start with a mador tick}
{loop until dreater than Xmax}
{should we do a mador tick?}
{move to bottom of mador ticK:
{vivdraw to the top of

andses ¥
mador tick}

a\'llj~00}
minor tick?}

{move to bottom of minor tick,
{+ivdraw to the top of
{keerp track of which lendth tick do}
{90 to next tick Position}

{logop if not donel

{procedure "Xaxis"}

to

201

202 Listings of Example Programs

FPATEE {E R R AR AR RN R AR RN R RN RN RN R R RN LR RN IR R AR RN RN AR R R RN FFRNH)
procedure Yaxis(SpacingsLocationsYmins¥max: reali
Mador: inteders
MadsizesMinsize: real)i

{ This procedure draws an Y-axis at any intersection point on the Plotting }
{ surface. Parameters are as follows: }
{ Spacing: The distance between tick marks on the axis, +
{ Location: The X-value of the Y-axis, }
{ YminmsYmaxs The left and ridght ends of the Y-axis: respectively, ¥
{ Mador: The number of tick marks to de before drawind a mador tick ¥
{ mark, If Mador=5, every fifth tick mark will be mador. ¥
{ Madsize: The lendgths in current unitsy of the mador tick marKks., }
{ Minsize: The lendthy in current unitss of the minor tick marKs, }
L T b E T I g ¥
uar

Y reali {current Y of ticKk marks}?

SemiMinsize: reals {half of minor tick sizel}

SemiMadsize: reals {half of mador tick size}

Counter: inteders {Keers track of when to do mador ticks}
bedin {body of procedure "Axes"}
move(Location sYmin) i {lower end of the v-axis}
line(Locations¥max)i {draw v-axis}
SemiMinsize:=Minsize*0,53 {half of every tick mark needs to...}
SemiMadsize:=Madsize*(,53 {vvibe on each side of the axis)
Yi=Round2(¥YminsSpacind*MadaorsDown) i {round start Point to next lower madorl}
Counter:=03 {start with a mador tick}
while Y<=Ymax do bedin {loop until greater than Xmax}

if Counter=0 then bedin {should we do a mador tick?}

{move to left of mador ticKs and...}
{voedraw to the ridght of mador tick}

move(lLocation-SemiMadsize V)
line(Location+SemiMadsize¥)
end {Counter=07%
else bedin
move(Location-SemiMinsizesY)
line({Location+SemiMinsize»¥)
end’ d{else bedint

.
k]
.
k]

ki {move to left of mador ticks and.,.,.}

H
3 {vesdraw to the ridght of mador tick?

Counter:=(Counter+1) mod Madors {Keer track of which lendgth tick to do}
Yi=¥+Spacings {90 to next tick Positionl}
ends {while} {loor if not donel

end s {procedure "Yaxis"}

$rades%
bedin
dgrarhics.inits

display_init(CrtAddrsControlWord:ErrorReturn)s

if ErrorReturn=0 then bedin
set_aspect(311,389)3
CharWidth:=2%0,043
CharHeight:=2%0,083
set_char_size(CharWidth:CharHeight)i
Text:='YOLTAGE VARIANCEj
for Xi=-3 to 3 do bedin

move(-{(strlen(Text)*CharWidth)/2+X*0,002,0,9)3

dgtext(Text)i
endi
set_text_rot(0,1)}
CharWidth:=2%0,0251
CharHeight:=2%0,043%
set_char_size(CharWidthsCharHeight)3
Text:='Voltade’s

move(-0,9y-(strlen(Text)*CharWidth)/2)3

gtext(Text)3i
Text:='Time (seconds) '}
set_text_rot(1,0)3

move(-(strlen(Text)*CharWidth)/2,-0,92)3

dtext{Text)s
set_viewport(Q,14+0,99,0,12,0,7)3
move(-1s-1)% line(-14+1)7 line(ls1)3
set_window(0,100,0,16,0,18)3
Haxis (1 0,16,+-50,4150,5,0,001,0,0003)3
Yaxig (0,001,040, 190,2954241)3
for Xi=1 to 100 do hbedin
Yi=DataPoint(X)3
if H=1 then move(XsY)
else line(Xs¥Y)i
endi {for X:i=1 to 100}
endi {ErrorReturn=07}
drarhics.terms
end.

line(1ls-1)3

Listings of Example Programs

{REEFREEEERRRERRREREREFRRF R RN R AR RREERRREERRER R AR R AR FRRERR D

{bodv of Pprodram "SinAxesl"}
{initialize the drarhics svstem?}
{which output device??}
{ountput device initialization
{use the whole screen}’

{char width: 4% of screen width?}
{char heidht: 4% of screen height}
{install character size?

{define text to be labelled}

{make "bold" label}

{center label}

OK?}

{label the text}

{uvertical labels?}

{char width: 2,37 of screen width}
{char heidht: 4% of screen heidght}
{install character size?}

{define the text to be labelled}

{start point of centered labell}
{label the text}

{define the text to be labelled}
{horizontal labels}

{start Point of centered label?}
{label the text}

{define subset of screen}

line(-1,-1)3% A{framel}

{scale the window for the datal}

{draw the x-axis}

{draw the v-axis}

{100 Points totall}

{det a point from the function}k

{move to the first Point..s}

{vvvand draw to all the rest}

{terminate the drarhics rpackadel}
{prodram "SinAxesl"}

203

204 Listings of Example Programs

SinAxes2

prodram SinAxesZ(outrPut)s

import dd9l_lib} {det drarhics routinest
const
CrtAddr= 33 {address of internal CRT?}
ConmtrolWord= 03 {device controli O for CRT}
tvee
RoundType= (Ups+ Downy Near)s {used by function Round2}
var
CharWidth: reals {width of char is world coords}
CharHeight: reals {height of char is world coords}
Text: strindl2073 {temporary holdind rPlace for text?}
ErrorReturn: inteders {variable for imitialization outcomel
I: inteders {return variabkle from STRWRITE?
e intederi
Y reals
ClirKmingy ClirXmaxs: reals {soft clip limits in x}
ClipYminy ClirYmax: reali {soft clirp limits in »}
$include ‘DGLPRG:DataPoint’$ {functions vi=fix) }

SPagded [HEFERRRAFERERER N RN E R R R RN R AR AR AR R AR R RR AR AR R RN E AR R R RN RN
procedure ClirLimit(Xmin, Xmax,» Ymin, Ymax: real)i

R B T T L }

{ This procedure defines the four dlobal variables which specify where the ¥

{ soft clip limits are, }

e e }

bedin {body of Procedure "ClipLimit"?}

if Xmin<Xmax then bedin A\ }
Clipmins=Xmins { A Force the minimum soft }
ClipXmax:=Xmax} { \ clirp limit in X to be }

end { \ the smaller of the two }

plse bedin { /W values passed into }
Clipmin:=Xmaxi { / the Procedure, }
ClirXmax:=Xmin 3 { 7/ ¥

ends {7/ }

if Ymin<Ymax then bedin { A\ }
ClipYmins=Ymini { A Force the minimum soft 7}
ClirYmax:=Ymax? { \ cliep limit in ¥ to be ¥

end { \ the smaller of the two

else bedin { /Y uvalues passed into. }
ClirYmin:=Ymaxs { / the procedure, }
Clir¥maxs=Ymins { / }

ends {7/ ¥

ends {procedure "ClipLimit"}

$PAdEs (R KR FERE RN NN RRRE RN R R RN AR RN R AR AR R RN ERRARR RN RR AR R AR R R)
procedure CliepDraw(Xls Y14 X2y YZ2: real)s

D e ¥
{ This procedure takes the endepoints of a lines and clips its, The soft }
{ c¢lirp limits are the real global variables ClipXmins ClierXmaxs ClipYmin, }
{ and Clir¥max., These mavy he defined throudh the procedure ClirLimit, }

Listings of Example Programs

label
13
type
Eddes= (LeftsRightsTorsBottom)s {possible eddes to cross’
OutDfBounds= set of Eddess {set of eddes crossedl
var
OutOutl Out2:0ut0fBoundss
Ky Yo reals
L e T T e T T ¥
procedure Code(Xs ¥: real’d var Out: OutOfBounds)i
bedin {nested procedure "Code"}
Out:=[13 {null set?}
if x<ClipXmin then Outi=[left] {off left edge?}
else if x:*ClipXmax then Outi=[rightls {off right edge?}
if viCliepYmin then Out:=0ut+lbottom] {off the bottom?}
else if v:Clip¥max then Dut:=0ut+ltorli {off the tor?}
ends’ {nested procedure "Code"}
{ m o m e }
bedin {body of procedure "ClipDraw"?} :
Code(X1,¥1,0uti)s {fidure status of Point 1}
Code(X2Y2,0ut2) {fidgure status of Point 2}
while (Outl<>[1) or (Out2<»[1) do begin {loor while either point out of randel}
if (Outl*¥0ut2)<:[1 then doto 1% {if intersection non-nully no linel
if Outl<>01 then Out:=0utl
else Qut:=0utZs {0ut is the non-emPty onel
if left in Out then begin {it crosses the left eddel
yesY1+(Y2-YI)*¥(ClirPkmin-X1)/(K2-X1)i{adiust value of v appropriatelv’}
x:=ClipXmini {new X is left eddel
end {left in Out?}
else if right in Out then bedin {it crosses right edde}
yi=Y1+(Y2-Y1)*#(Clirpkmax-X1)/(X2-X1)i{adiust value of v arpropriatelv?}
x:=ClirXmaxi {mew X is ridht eddel}
end {right in Out?}
else if bottom in Out then bedin {it crosses the bottom eddel
K =X1+(H2- XD (CLipYmin-Y1)/(Y2-Y1)i{addust value of x appropriatelv}
yi=Clip¥mini {new v is bottom eddel
end A{bottom in Out?}
else if tor in Out then bedin {it crosses the top eddel
X=X+ (H2-X D) *#(ClipYmax-¥1)/(¥2-¥1)i{addust value of x arpropriatelv}
vi=ClipYmax} {new v is top edde}

endi {torp in Out?}
if Out=0utl then bedin
Kli=xi Yiv=vsd Code(x sy Outl)si {redefine first end Point}
end {Out=0uti?}
else begin
KE21=X1 Y2i=v3 Code(x sy Out)s {redefine second end Point}
endi d{else bedgin}
endi {whilel}
move(xlsvl)s {if we det to this points the line...}
Tine(x2yv2)3 {+vvis5 completely visibley, so draw it}
i endi {procedure "ClipDraw"?}

205

206 Listings of Example Programs

$pagded [ERREFERFRRFERFR NI R R RN RN R R R AR RN R RN RN E R R AR R RN RENRRR RN R AR R R R R RRR)
furnction Round2(N, M: real’ Mode: RoundTvre): reals

{ This function rounds "N" to the nearest "M"; accordindg to "Mode", This }
{ function works only when the ardument is in the rande of MININT., .MAXINT. 1}

T T e e ¥
const
ersilon= 1E-103 {roundoff error fudde factor}
uar
Rounded: reals {temporary holding areal
Nedative: booleani {flag: "It is nedative?"}
bedin {body of "RoundZ"}
Nedatives=(N<Q,0)3 {is the number nedative??}
if Negative then begdin
N:r=abs(N)3 {work with a positive number}
if Mode=Up then Mode:=Down {if number is medatives 4.4}
else if Mode=Down then Mode:=Urj {+ivreverse up and down?
endi
case Mogde of {should we round the numbers.s}
Down: Rounded:=trunc(N/M)*M;3 {veoleft on the number line?}
Up: begin
Rounded:=N/M1 {veeridht on the number line?}

if abs(Rounded-round{(Rounded)):ersilon then
Roundedi=(trunc(Rounded)+1.,0)*M

else
Foundeds=trunc(Rounded)*M;
end s
Near: Rounded:=trunc(N/M+M*0,5) %M} {vevto the nearest multirle?}

endi d{casel}
if Negdative then Rounded:=-Roundeds {reinstate the sidgn}
RoundZ:=Rounded: fassign to function namel
end s {function "RoundZ"}

FPaget {HREEEREERRRERERERE AR ERRERRER R AR RN ARERE IR R R AR AR R RN RRE R AR AR RENR)
procedure XaxisCliep(Spacingy Location: reali Mador: inteders
MadsizesMinsize: real)s

{ This Procedure draws an X-axis at any intersection roint on the Plotting %
{ surface, Parameters are as follows: +
{ Spacing: The distance between tick marks on the axis. }
{ Location: The Y-value of the X-axis, }
{ Madors: The number of tick marks to de before drawing a mador tick ¥
{ mark, If Mador=5, every fifth tick marKk will be mador. }
{ Madsize: The lendthy in world unitss of the mador ticKk marks, }
{ Minsize: The lendthy in world unitsy of the minor tick marks., }
{ oo e }
var

ne reals W oposition of tick marks?

SemiMadsize: reals {half of mador ticKk size}

SemiMinsize: reals’ {half of minor tick size}

Counter: inteders {keers track of when te do maJor ticKks?}

Listings of Example Programs

bedin {body of procedure "XaxisClip"}
SemiMadsize:=MajSize*0,> {calculate half of mador tick size?}
SemiMinsize:=MinSize*(,3 {calculate half of minor ticKk sizel}
Counter:=01 {start with a mador tick}
ClirDraw(Cliep¥minsLocationsClirXmaxLocation)i {draw the X-axis itself?
Ne=Round2(ClipXmin,Spacing*MadorsDown) i {round to next lower mador}

while H<=ClipXmax do bedin {loop until greater than ClirpXmax}
if Counter=0 then {do a mador tick marK?}
ClipDraw(¥s+Location-SemiMadsize¥rLocation+SemiMadsize)
else
ClipDraw(¥sLocation-SemiMinsizesXsLocation+SemiMinsize)s {do minor tick}
Counter:=(Counter+l) mod Madori {keerp track of which length tick to do}
Ki=X+Spacinds {d0 to next tick position?
endi {while}
endi {procedure "XaxisClir"}

FPaged [FERFERFERFRREREFERRRERERREE RN R RN AR R R R R AR R AR RRRERFRRFRRFR RN R R T
procedure YaxisCliep{Spacings Location: reali Mador: inteders
Majsizes Minsize: real)s

{ This procedure draws an Y-axis at anv intersection point on the Plotting 1}
{ surface., Parameters are as follows: }
{ Spacing: The distance between tick marKs on the axis. ¥
{ Location: The X-value of the Y-axis. }
{ Mador: The number of tick marks to dge before drawing a mador tick }
{ mark, If Mador=5, every fifth tick mark will be mador, }
{ Madsize: The lendths in world unitss of the mador ticKk marKs, }
{ Minsize: The lendthy in world unitsy of the minor tick marks. ¥
T e e T T ¥
var

i reals {Y position of tick marKs}

SemiMadsize: real} {half of mador tick size}

SemiMinsize: real} {half of minor tick sizel}

Counter: intedersi {keers track of when to do maJor ticks}
bedgin {body of procedure "YaxisCliep"?}
SemiMadsize:=Madsize*0,3} {calculate half of mador tick size}
SemiMinsize:=Minsize*0,53 {calculate half of minor tick sizel}
Counmters=03 {start with a mador ticKk}

ClieDraw({LocationsClir¥YminsLocation sClirYmax)i
Yi=Round2(Clir¥min Spacind*MadorsDown)i {round to next lower madorl

while Y<=ClirYmax do bedin {loor until greater than Ymax?}
if Counter=0 then {should we do a mador tick?}
ClipDraw(Location-SemiMadsizesY¥sLocation+SemiMadsizesY)
else
ClipDraw(lLocation-SemiMinsize Y Location+SemiMinsizes¥)s
Counter:=(Counter+l) mod Madorsi {Keer track of which size tick to do?}
Yi=Y+5pacingi {90 to next tick Position}’

endi {while}
ends {procedure "YaxisClip"}

207

208 Listings of Example Programs

trades
begin
grarhics.inits

displav_.init(CrtAddrsControlWordsErrorReturn) s

if ErrorReturn=0 then hbegin
set_aspect(311,389)3
CharWidth:=2%0,043
CharHeight:=2%0,083
set_char.size(CharWidthsCharHeight)3
Text:='UVOLTAGE VARIANCE'j

for X:=-3 to 3 do bedin

movel{-(strlen(Text)*CharWidth)/2+X*0,002,0,8)3

dgrext{(Text)s
ends
set_text.rot(0ys1)3
CharWidth:=2%0,025%
CharHeidht:=2%0,04%
set_char_size(CharWidthsCharHeight)3
Text:i='Voltade '3

move(-0,97-(strlen(Text)*¥CharWidth)/2)}

gtext{Text)s
Text:='Time (seconds)’i
set_text.rot(1,0)%

move(-(strlen{Text)*CharWidth)/2+-0,92)3

gtext{Text):
set_viewport(0,1+0,99,0,12,0,7)3
moue(-1y-1)% lime{-14133% line(ls+1)3
set_window(Qy10040,16,0,18)1
ClipLimit(0,100,0,16+0,18)3
HaxisCLlip(14+0,16+5+0,0008,0,0004)3
YaxisClirp(Q,0005,0434291) 73
CharWidth:=1,31
CharHeight:=0,0008;
set_char_size(CharWidth,CharHeight)}
Texti='"4
for X:=0 to 10 do bedin
strurite(Text 1D pX*10:0)3

move(X*10-{strlen(Text)*CharWidth)/2+0,1393)3

dgrext{Text)s
ends {for x?
Yi=0,163
repeat
strwrite(Text 1 +XsViB:d) 3
move{-ByY-0,0002)3
gtext(Text)
Vi=Y+0,00253%
until Y:0,183
for Xi=1 to 100 do bedin
¥i=DataPoint (X)3
if ¥=1 then move(XyY)
else line{(X,»Y)s
ends {for H:=1 to 100}
endi {ErrorReturn=07}
drarhics_terms
end,

Tine(is-1)3

CREXFREREEEREEFEREERERFREEE RN R RREEEREREREEREREERRRREERERE RN RN}

{body of prodram "SinAxesZ"}
{initialize the drarhics svstem’
{which output device?}
{output dewice initialization OK?}
{uwse the whole screen’t

{char width: 4% of screen width}
{char heidht: 4% of screen heidht}
{install character sizel}

{define text to be labelled}

{make "bold" label}

{center labell}
{label the text}

{vertical labels?}

{char width: 2.3% of screen
{char heidht: 4% of screen
{install char size?}

{define text to be lakelled}
{start point of centered labell
{label the text}

{define text to ke labelled}
{horizontal labels}

{start point of centered labell}
{label the text?

{define subset of the screen’
line(-14+-1)3% {frame?

{scale the window for the datal
{define the soft clip limits?}

{draw the clirped X-axis}

{draw the clirped Y-axis}

{char width: 1,3 user X urnits wide}
{char heidht: 0008 user ¥ units highl}
{install character sizel}

{erase previous definitions of string}
{eleven X labels?}

{convert number to string’

{center the label}

width?
heidht?}

{label the text}

{starting ¥ position for ¥ labels}
{convert number to string’

{center the text verticallv}
{label the text?}

{next ¥ positionk}

{terminating condition}

{100 Points totall

{det a point from the functionl}
{move to the first Point...}

{+vvand draw to all the rest?

{terminate the drarhics Packade}

{progdram "SinAxesi"}

SinClip
prodram SinClir(outrPut)s
import dgl_libs

const
CrtAddr= 33
ControlWord= 03
tvre
RoundTyre= (Up+ Downs Near)
var
CharWidth: reals
CharHeight: reals
Text: string[20713
ErrorReturm: inteders
Wi inteders
Y reali
ClipKmin,y ClirpXmax: reals
ClipYmin,s ClirYmax: reali
$include ‘DGLPRG:DataPoint’$
$rade$

Listings of Example Programs

{det drarhics routinesl}

internal CRT}
for CRTY

{address of
{device controli O
i {used by function Round2}
{width of char is world coords}

{height of char is world coords}

{temporary holding place for text}
{variable for initialization outcomel

{soft clir limits in x1}
{soft clip limits in v}
{function: vi=f{x) ¥

TREEREEEFREEREREERERFRRRERERRERERRR R R R FFRRFRAREXRERRAXRRRRR R R HHH)

procedure ClipLimit(Xmins Xmaxs Ymins Ymaxs: real)s

L e T L L T L T Jepupiupp Iy }

{ This procedure defines the four dlobal variables which specify where the }

{ soft clirp limits are. ¥

e e L T E T S }

bedin

if Xmin<Xmax then bedin {\ }
ClipKmins=Xmin} { A\ Force the minimum soft %
ClirXmaxs=Xmax3 { \ clir limit in X to bhe }

end { \ the smaller of the two 1}

else begin { /¥ values passed into }
Clipmin:=Xmaxi { / the procedure, }
ClirXmax:=Xmini { / }

endi {7/ ¥

if Ymin<Ymax then begin {\ }
ClipYmins=Ymini { A\ Force the minimum soft 2
ClirYmax:=Ymaxi { \ clirp limit in Y to be }

end { A\ the smaller of the two }

else begin { /¥ values passed into ¥
CliprYmin:=Ymaxi { / the procedure. }
ClirYmax:=Ymins { 7/ }

endsi {/ }

end)

FPaged {FERFERRERRRRERR R AR AR RN R R RN RN ER AR R R R R RN ERE RN RN R R RN RN HR)

procedure ClipDraw(X1ly Y1y X2y Y2: real)i

L e T T ¥

{ This procedure takes the endpoints of a lines and clips it, The soft }

{ clip limits are the real 9dlobal variables ClipXmins ClipX¥maxs CliPYmin, b

{ and ClirYmax., These mavy be defined throudh the procedure ClirLimit. }

R et et }

label

H

tvpre
Eddeg= (LeftsRidght+TorBottom)s {rPossible eddes to cross)
OutODfBounds= set of Eddess {set of eddes crossed}

var

OutsOutl 0ut2:0ut0fBoundss
Ky Y reali

209

210 Listings of Example Programs

T e T }
procedure Code(¥s Y: real’ var Out: OutOfBounds)i
begin {nested procedure "Code"}
Qute=C13 {null set?}
if x<ClipXmin then Outi={left] {off left edge?}
else if x=:ClipXmax then Qut:=[ridghtl; {off right edde?}
if v4Clie¥Ymin then Dut:=0ut+lbottoml {off the bottom?}
else if v:Clip¥max then Out:=0ut+ltorls {off the top?}
endi {nested procedure "Code"}
T T e ¥
bedin {body of procedure "ClipDraw"}
Code (X1 Y1 0uti)s {fidure status of point 11}
Code(X2»¥20ut2) s {fiqure status of point 2%
while (Outl<>[1) or (Dut24>[]1) do bedin {loor while either Point out of randel
if (Outi*0ut2)<>[) then goto 13 {if intersection wow-null,s mo linel}
if Outl<>01 then Out:=0utl
else Qut:=0ut2s {0ut is the nwon-empty onel
if left in Out then bedin {it crosses the left eddgel
yesY 1+ (Y2-Y1)*(Clipmin-®1)/(X2-X1)3{adjust value of v aPrprorriatelv?
X3=ClirPRmini {new x is left eddel}
end {left in Out?}
else if right in Out then besin {it crosses right edde}
yr=Y14(Y2-Y1)*(ClipXmax-X1)/({Z2-X1)i{addust value of v arpropriatelv?}
i=ClipXmaxs {new x is right eddel}
end {right in Qut?}
else if bottom in Out then bedin {it crosses the bottom eddel}
1=¥1+{H2-X1)*(ClipYmin-Y1)/(Y2-Y1)3i{adjust value of x arpropriately?}
vi=ClipYmini {new v is bottom eddel
end {bottom in Out?}
else if tor in Out then bedin {it crosses the top eddel}
X1=¥1+(H2-K1)*(ClipYmax-Y1)/(¥2-Y1)i{adJjust value of x arPropriatelv}
vi=ClirYmaxi {new v is top eddel}

endy {tor in Out?}
if Out=0utl then bedin
Kli=x3 Yie=v3 Code(x sy sOutl)s {redefine first end Point}
end {0ut=0uti?}
else bedin
K2i=x3 Y2i=vi Code{x sy s0ut)s {redefine second end Point}
endi {else bedin}
endiy {whilel}

move(xlsvl)s {if we det to this point, the line...}
line(x2sv2) 3 {vivis completely visibley so draw it}
1: ends {procedure "ClipDraw"? {returnt

$Paded {EEEEFEERFFEERERRER AR RRE R R R RN R R RN RRER R R R R RN R RN AR RH RN RNR)
function Round2(N, M: reals Mode: RoundTvpe): reals

{ This functiown rounds "N" to the nearest "M": accordindg to "Mode". This }
{ function works only when the ardument is in the rande of MININT.,.MAXINT. 1}

T il }
Const

epsilon= 1E-103 {roundoff error fudde factorl}
var

Rounded: reals {temporary holding areal}

Nedative: booleans {flad: "It is nmedative?"}

Listings of Example Programs

begin {body of "RoundZ2"}

Nedative:=(N{Q,0)3 {is the number nedative®}

if Nedative then bedin
Ni=abs(N)j {work with a positive number}
if Mode=Up then Mode:=Down {if number is nedatives 444}
else if Mode=Down then Mode:=Upi {+vireverse uP and downl}

endi

case Mode of {should we round the number,..+}
Down: Rounded:=trunc(N/M)*M3 {vivleft on the number line?}
Up: bedin

Rounded:=N/Mi {+veeridht on the number line?}

if abs(Rounded-round(Rounded))*ersilon then
Rounded:=(trunc(Rounded)+1,0) %M

else
Rounded:=trunc(Rounded) *Mj
endi
Near: Rounded:=trunc(N/M+M*0,3)*Mi {+vsto the nearest multirle?}

endi d{casel}
if Nedative then Rounded:=-Rounded; {reinstate the sign}
RoundZ:=Roundeds {assign to function namel
ends {function "Round2"}

FPaded {EEEREREREREFERERERERER R R R R R RERRRE RN RN AR R RN R R RN RN RN RN RER RN RRR}
procedure XaxisClirp{(Spacinds Location: reald Mador: inteders
Madsize Minsize: real)s

{ This procedure draws an X-axis at any intersection point on the plotting }
{ surface., Parameters are as follows: }
{ Spacing: The distance between ticK marKs on the axis. ¥
{ Location: The Y-value of the X-axis. }
{ Mador: The number of tick marks to de before drawind a mador tick ¥
{ mark, If Mador=5, every fifth ticKk mark will be maJor. }
{ MaJsize: The lendthy in world unitss of the mador ticK marks. }
{ Minsize: The lendthy in world unitsy of the minor tick marks, }
{ e e ¥
var
W reals

SemiMadsize: real}
SemiMinsize: reals
Counters inteder? {keers track of when to do mador ticKks}
bedin {bodv of procedure "XaxisClie"}
SemiMadsize:=MajSize*0,53
SemiMinsize:=MinSize#0,33
Counter:=03 {start with a mador tick}
ClirDraw(ClirXminsLocationsClirXmax Location)i
Ki=RoundZ2(ClipXmin,Spacing*Major+Down)i {round to next lower mador}
while X<=ClipXmax do bedin
if Counter=0 then
ClirDraw(XsLocation-SemiMadsizesXslocation+SemiMaisize)
else
ClipDraw(Xslocation-SemiMinsizesXsLocation+SemiMinsize)s
Counteri=(Counter+l) mod Madorj
Ki=X+5pPacing}
endi {whilel}
ends {rrocedure "XaxisClier"}

211

212 Listings of Example Programs

$Paged {RFEXERNEREFRR AR R RN R RN RE R RN NN R RN RN R RN AR AR AR R AR RRRRRRRAH)
procedure YaxisClie{(Spacings Location: reals Mador: inteders

Madsizes» Minsize: real)}
A T T ¥
{ This procedure draws an Y-axis at any intersection Point on the plotting
{ surface, Parameters are as follows: }
{ Spacing: The distance between tick marKs on the axis, }
{ Location: The X-value of the Y-axis. }
{ Mador: The number of tick marks to de before drawingd a mador tick }
{ mark, If Mador=5, every fifth ticKk mark will be mador. ¥
{ Madsize: The lendthy in world unitsy of the madJor tick marks. }
{ Minsize: The lendgths in world unitsy of the minor tick marks, }
{ o m e e e e }
uar

Y reall

SemiMinsize: reall

SemiMadsize: reall

Counter: inteders {Kkeers track of when to do mador ticks?}
begin {body of procedure "YaxisCliep"}
SemiMadsize:=Majsize*0,5}
SemiMinsize:=Minsize*0,01
Counter:=03 {start with a mador tick}

ClirDraw(LocationsClipYminsLocationsClip

Yi=Round2(ClirYminsSrpacindg*MadorsDown) i
while Y<=ClieVYmax do begin
if Counter=0 then

ClieDraw(Location-SemiMadsize¥sloca
else

Ymax) i

{round to next lower mador}

tion+SemiMadsizesY)

ClieDraw(Location-SemiMinsizes¥sLocation+SemiMinsizes¥)

Counter:=(Counter+l) mod Madorsi

¥Yiz=¥+5pacings

endy {whilel}

end 3

$raded {EEEFEEAEXXRERFEFXRFXFFERXERENER
bedin

dgraphics_inits
displav_init(CrtAddrsControliord+ErrorRe
if ErrorReturn=0 then bedin
set_aspect(311,389) %
CharWidth:=2%0,043
CharHeight:=2%0,08:
set_char_size(Charidth:CharHeight)3
Text:='VDLTAGE VARIANCE'3
for X:=-3 to 3 do hedin

A

move(-(strlen{(Text)*¥CharWidth)/2+X*0,002,0,8)3

dtext(Text)s
ends
set_text_rot(0,1)3
CharWidth:=2%0,0253
CharHeight:=2%0,043
set_char_size(CharWidth,CharHeight)3
Text:='Voltade '}
mouve(-0,9-(strlen(Text)*CharWidth)/2)
gtext(Text)
Text:='Time (seconds) '3
set_text.rot(14+0)1

move(-(strlen{Text)*CharWidth)/2,-0.92)%

dgtext(Text)s

{procedure "YaxisClip"}
EREEREERRRFERERERER RN RN R AR RN NRN]
{prodram "SinClip"}

{initialize the gdrarhics svstem’
turn) s {which output device?}
{outeput device initialization
{use the whole screen}’

{char width: 4% of screen width}
{char heidht: B% of screen height}
{install the character sizel
{define the text to be labelled}
{make "bold" label}

{center label?}

0K?}

{label the text?

{vertical labels?}

{char width: 2.3% of screen
{char heidht: 4% of screen
{install character sizel
{define text to be labelled}

H {start point of centered labell
{label the text?}

{define text to ke lahelled}
{horizontal labels}

{start Point of centered labell}
{label the text?

width?
height)

set.viewrport (0,14+0,99,0,1240,7)1%
move(-14-1)3% line(-1,1)3% line(l+1)3
set_window(0+1004,0,168,0.,18) 1%
ClirLimit (04100,0,16+0,18)3
KaxisClip(1+0,16+3,0,0008,0,0004)1
YaxisClip (0, Q01,0,5424+1)3
for Xi=1 to 100 do bedin
Yi=DataPoint(X)3
if X=1 then move(X,Y)
else line(X,¥)3
endy {for X:=1 to 100}
endi {ErrorReturn=07}
drarhics.terms
end.,

SinLabell

prodram Sinlabell{output)}

import d9l_liby dgl_inaj
const
CrtAddr= 33
ControlWord= 03
var
ErrorReturn: inteder:
Strngd: stringl713
Character: inteders
e inteders
Y1 reals
$include ‘DGLPRG:DataPoint’$
$rades
bedin

graprhics.inits

displav.init(CrtAddrsControlWordsErrorReturn)s

if ErrorReturn=0 then bedin
set_aspect(511,389)3
move{-0,454+0,9)3%
gtext (‘YOLTAGE YARIANCE') 3
Strngi=‘Yoltade’;
move(-0,95,0,3)3
for Character:=1 to strlen(Strnd) do

dgtext{str{StrngsCharacters1)+chr(13)+chr(10))}

move(-0,s3y-0,8)1%
dgtext(‘'Time (seconds) ‘)3
set_viewport(0,1,0,99,0,1240.,7)1
move(-14-1)3 line(l,-1)3% line(1+1)3
set_window(0,100,0,164+0,18)3
for X:=1 to 100 do bedgin
Yi=DataPoint (X)3
if X=1 then move{X,Y)
else line(X,y¥)3
endy {for X:=1 to 100}
end’ {ErrorReturn=07}
dgrarhics_terms
and.,

line(ls-1)3

line(-14+1)3

Listings of Example Programs

{define subset of window}
line(-13-1)3% A{frame}
{scale the window for the data}
{define the soft clir limits}
{draw the clirped X-axis}

{draw the clirped Y-axis}

{100 Points totall}

{get a point from the function}
{move to the first Point...}
{+vvand draw to all the rest}

{terminate the drarhics Packadel
{prodram "SinClip"}

{det drarhics routines?}

{address of internal CRT}
{device controli O for CRT}

{variable for initialization outcomel

{seven characters in ‘Yoltade’}
{loor counter for labelling}

{functions: vi=f(x) }

LR R R REERERFERRRRRRERREREE R RRERERRRRRRRRFRRRERRERRE R AR RRRRR R NRR]}

{bodv of program "SinLabell"}
{initialize drarhics svstem?
{which output device?}
{outrput device initializatiown OK?}
{use the whole screen}

{starting Ppoint for the title}
{label the Plot}

{the v-axis label}
{starting Point for the
{follow every

v-axis titlel
characters.}

{+vvwith a CR/LF}
{starting point for the x-axis label}
{x-axis label}

{define subset of screen}
line(-1:-1)35 A{frame}
{scale the window for the datal
{100 pPoints totall}

{det a point from the function}
{move to the first point...}
{+evand draw to all the rest?}

{terminate the drarhics rpacKade}
{prodgram "SinLabeli"}

213

214 Listings of Example Programs

SinLabel2

program SinLabelZ(outrPut) s

import dd9l_lib,s dgl_inas {get dgraprhics routines?
const
CrtAddr= 33 {address of internal CRT}
ControlWord= 04 {device controls O for CRT}
uar
CharWidth: reals {width of character in world coords}
CharHeight: reals {height of character in world coords?}
Text: stringl20713 {temporary holding place for text?}
ErrorReturn: inteders {variable for initialization outcomel
Wi inteders
Y reals
$include ‘DGLPRG:DataPoint’$ {function: »i=f(x) }
$Paged {FFERFFRERRFERNFRRRR IR RE RN R RN R RN AR R REERRRRREE R RN NN RN AR]
begin {bodv of program "SinlLabel2"}
dgrarhics.inits {initialire the drarhics svstem}
displav_init{(CrtAddrsControlWord:ErrorReturn)i {which outrput deuice?}
if ErrorReturn=0 then bedin {output device initialization OK?T}
set_aspect(311,389)1 {use the whole screent
CharWidths:=2%0,041% {char width: 4% of screen width}
CharHeight:=2%0,083 {char heidht: B% of screen heidht?}
set_char_size(CharWidth,CharHeidht)s <{install character sizel
Text:='UDLTAGE VARIANCE '3 {define the text to be labelled}
move(-(strlen(Text)*CharWidth)/2,0,9)3{d0 to start point for centered label}
gtext(Text) {label the text}
set_text_rot(0,1)3 {vertical labels?}
CharWidth:=Z2%0,025} {char width: 2.5% of screen width?
CharHeight:=2%0,041 {char height: 4% of screen heidht}
set_char_size(CharWidth CharHeidght)3: {install character size}
Text:='Voltage’} {define the text to be labelled}
move(-0,9y-(strlen(Text)*Charkidth)/2)} {start point of centered labell}
gtext(Text) {label the text?
set_text_rot(1+07)3 {horizontal labels?}
Text:='Time (seconds) '3 {define the text to be labelled?}
move(-(strlen(Text)*CharWidth)/2,-0,92)3 {start point of centered labell}
gtext(Text)s {labkel the text}
set_viewport(0.1,0,99,0,1290.7)3 {define subset of screen’
move(-1+-1)3 line(-1+1)% line{1s1)3 line(ls-1)3% line(-1+-1)3% A{framel
set_window(0,100,0,16,0,18)1 {scale the window for the datal}
for X:=1 to 100 do bedin {100 points totall}
Yi=DataPoint (})i {det a point from the function?
if X=1 then mouve{X,Y {move to the first Point..,}
else line(X ¥Y)3 {vevand draw to all the rest?}

ends {for X:=1 to 100}
endi A{ErrorReturn=07%
graphics.terms {terminate the drarhics rpacKadel
end., {prodram "SinlLabel2"}

Listings of Example Programs 215

SinLabel3

prodram Sinlabel3{outrPut)i

import dgl_liby dgl_inqj {det drarhics routines}
const
CrtAddr= 313 {address of internal CRT}
ControlWord= 03 {device controli O for CRT}
var
CharWidth: reali {width of character in world coords}
CharHeight: reals {height of character in world coords}
Text: stringl2013 {temporary holding place for text}
ErrorReturn: inteders {variable for initialization outcomel
R inteders
Y reals
$include ‘DGLPRG:DataPoint’$ {function: vi=f(x) }
SPAdEd (R EREE AR EAR RN RN RN RN R RN RN RR R R R AR RN R R EERRERRRERRRRRRRRRR N]
bedin {body of prodram "SinlLabel3"}
grarhics.inits {initialize the drarhics svstem}
displav_init(CrtAddrsControlWordsErrorReturn)i {which output device?}
if ErrorReturn=0 then bedin {output device initialization OK?}
set_aspect{(311,389)3 {use the whole screen}’
CharWidth:=2%0,04% {char width: 4% of screen width}
CharHeight:=2%0,081 {char heidght: B% of screen height}
set_char_size(CharWidthsCharHeight)3 {install character size}
Text:="UOLTAGE VARIANCE'; {define the text to be labelled}
for X3=-3 to 3 do bedin {make "bold" labell}
move(-(strlen(Text)*CharWidth)/2+X*0,002,0,9)3 {center label}
gtext(Text)s {label the text}
endi {for X
set.text_rot(0y1)1 {vertical labels?}
CharWidth:=2%0,025} {char width: 2,5% of screen width?}
CharHeight:=2%0,043 {char heidht: 4% of screen heidht}
set.char.size(CharWidthsCharHeight)3d <{install character size}
Text:='Voltage '3 {define the text to be lahelled}
move(-0,9y-(strlen(Text)*CharWidth)/2)3 {start point of centered label}
dtext(Text)s {label the text}
set.text.rot{1,0)} {horizontal labels?}
Text:='Time (seconds) ‘i {define the text to be labelled}
move(-(strlen(Text)*CharWidth)/2+-0,92)3 {start Point of centered label}
dtext(Text) {label the text}
set_viewport(0,1,0,99,0,12:0,7)3 {define subset of screen}
move(-1+-1)3 line(-14+1)3% line(ls1)3 line(l,-1)3% line(-1,-1)3% {frame}
set_window(0,100,0,16,0,18)1% {scale the window for the datal}
for X:=1 to 100 do bedin {100 pPoints totall
Yi=DataPoint(X)3 {det a point from the function}
if ®=1 then move(X:Y) {move to the first Point...»
else line(X,Y)3 {+vvand draw to all the rest}

endi {for X:i=1 to 100}
ends {ErrorReturn=07}
drarhics_terms {terminate the draprhics pacKadel
end, {prodgram "SinlLabel3"}

216 Listings of Example Programs

SinLine
program SinLine{outrput)s
import dgl_lib}i

const
CrtAddr= 31
Control= 03

var
ErrorReturn: inteder:
K inteders
Y reals

$include ‘DGLPRG:DataPoint’$

{get drarhics routines?

{address of internal CRT}
{device controli O for CRT?

{variable for initialization outcomel}

{function: »i=f{x) }

$rages {**}

bedin
drarhics.inits

displav_init(CrtAddrsControlsErrorReturn) i

if ErrorReturn=0 thewn bedin
for Xe=1 to 100 do begin
Yi=DataPoint(X)3
if ¥=1 then mouve(X/100,Y)
else line(X/100,Y) 3
endi {for X:=1 to 100}
endy {ErrorReturn=07}
grarhics.terms
end.

SinViewpt
prodram SinYiewrPt(outrPut)s
import dgl.libi

const
CrtAddr= 33
ControlWords= 03
var
ErrorReturn: inteders
i inteders
¥ reals’

$include ‘DGLPRG:DataPoint’$

{bodv of erogram "SinlLine"?
{initialize draphics svstem}
{which output device?}
{output device initialization OK?}
{100 points totall

{det a point from the function?
{move to the first point...?}
{+vivand draw to all the rest?

{terminate the drarhics packadel}
{prodram "SinLire"}

{det drarhics routines?}

{address of internal CRT}
{device controls O for CRT}

{variable for initialization outcomel

{function: vi=f{x) }

tpades {**}

hedin
drarhics_inits

{body of prodram "SinViewpt"}
{initialize the drarhics svsteml

display_init(CrtAddrsControlWordErrorReturn)i {which output device?}

if ErrorReturn=0 then bedin
set_aspect(311,3B9)3

set_viewport (0,100,990, 12:0.70)3
move{-1+-1)3 line(i+-1)% line(ls1)3

set_window(0,100,0,16,0,18)3
for X:=1 to 100 do bedin
Yi=DataPoint (X)3
if X=1 then move(XsY)
else line{Xs¥)
ends {for X:=1 to 100}
ends {ErrorReturn=07}
grarhics_terms’
end.

{output device initialization OK?}
{use the whole screen}’
{define subset of screen}

line(-14+1)% line(-1+-1)3% A{framel

{scale the window for the datal
{100 points totall

{det a point from the furctionl}
{move to the first Point.,.+}
{+veand draw to all the rest?

{terminate the grarhics rackadge?
{prodram "SinViewpt"}

Listings of Example Programs 217

SinWindow

prodram SinWindow{output)s

import dgl_lib3i {get drarhics routines?
const
CrtAddr= 33 {address of internal CRT}
ControlWord= 03 {device controls O for CRT}
var
ErrorReturn: inteders {variable for initialization outcomel}
W intederi
Y reals
$include ‘DGLPRG:DataPoint’$ {function: vi=f(x) }
(R R R AR RN R AR RFERFRRERN R RN R R R R AR AR R FRRRRRFERRERARRR AR RERER KR RRRNER]
begin {body of prodram "SinWindow"?
drarhics_inits {initialize the dgrarhics svstem?}
displavy_init(CrtAddrsControlWordErrorReturn)i {which output device?}
if ErrorReturn=0 then bedin {output device initialization OK?}
set_window(0+100,0,16,0,18)3 {scale the window for the datal
for X:=1 to 100 do bedin {100 pPoints totall
Yi=DataPoint (X)i {det a point from the function}
if ¥=1 then move(X,Y) {mouve to the first Point,.,}
else line(X,Y) {+vesand draw to all the rest}

endi {for X:=1 to 1002}
end’ {ErrorReturn=07}
drarhics_.terms {terminate the drarhics Packadel
end. {program "SinWindow"}

218 Listings of Example Programs

Appendix

Graphics Procedure Reference

B

The Pascal Programming Language was designed as a teaching language, and as such was in-
tended to be machine independent. This attribute has its good and bad points. Being machine
independent makes the language more easily transportable, but also ensures that it is difficult, if not
impossible, to access any innovative hardware features provided by a specific computer system.

To allow easy access to the graphics and /O features of your Pascal system, a set of procedures and
functions are provided in the LIBRARY file on the SYSVOL.: disc. This reference describes the
syntax and semantics for the procedures and functions provided to access graphics.

The small block of text labelled IMPORT, immediately below the title of each entry, lists the module
which must be declared in an IMPORT statement in order to access the feature. Modules which are
needed by these imported modules, if any, are shown in the Module Dependency Table at the end
of this reference.

219

220 Graphics Procedure Reference

AWAIT _LOCATOR

IMPORT: dgl_lib
This procedure waits until activation of the locator button and then reads from the enabled
locator device. Various echo methods can be selected.

Syntax

- |
AWAIT L OCATOR a o nuttonnavmaer*lable‘ ()

x cooridinate y cooridinatel|
variable name variable namej

Item Description/Default Regiill?ie()ns
echo selector Expression of TYPE INTEGER MININT to MAXINT
button variable name Variable of TYPE INTEGER -

x coordinate name Variable of TYPE REAL —
y coordinate name Variable of TYPE REAL -

Procedure Heading

PROCEDURE AWAIT_LOCATOR (Echo : INTEGERS
UAR Button : INTEGER;
UAR WX, WY : REAL)3
Semantics

AWAIT_LOCATOR waits until the locator button is activated and then returns the value of the
selected button and the world coordinates of the locator. While the button press is awaited, the
locator position can be tracked on the graphic display device. If an invalid button is pressed, the
button value will be returned as 0; otherwise it will contain the value of the button pressed. On
locators that use a keyboard for the button device (e.g. HP 9826 / HP 9836). the ordinal value of
the key pressed is returned.

The echo selector selects the type of echo used. Possible values are:

0 - Noecho.

1 - Echo on the locator device.

2 - Small cursor

3 - Full cross hair cursor

4 - Rubber band line

5 - Horizontal rubber band line

6 - Vertical rubber band line

7 - Snap horizontal / vertical rubber band line

8 - Rubber band box

9 and above - Device dependent echo on the locator device.

Graphics Procedure Reference 221

Locator input can be echoed on either a graphics display device or alocator device. The meaning
of the various echoes on various devices used as locators and displays is discussed below.

The button value is the INTEGER value of the button used to terminate the locator input.
The x and y position represent the world coordinate point returned from the enabled locator.

AWAIT_LOCATOR implicitly makes the picture current before sending any commands to the
locator device. The locator should be enabled (LOCATOR_INIT) before calling AWAIT_LOCA-
TOR. The locator is terminated by the procedure LOCATOR_TERM.

Range and Limit Considerations

If the echo selector is out of range, the call to AWAIT_LOCATOR is completed using an echo
selector of 1 and no error is reported. Echoes 2 through 8 require a graphics display to be
enabled. If a display is not enabled, the call will be completed with echo 1 and GRAPHICSER-
ROR will return 4.

If the point entered is outside of the current logical locator limits, the transformed point will still be
returned in world coordinates.

Starting Position Effects

The location of the starting position is device dependent after this procedure with echo 0 or echo
1. For soft-copy devices it is typically unchanged; however, for plotters the pen position (starting
position) will remain at the last position it was moved to by the operator. This is done to reduce
pen movement back to the current position after each AWAIT_LOCATOR invocation.

Echo Types

Several different types of echoing can be performed. Some echoes are performed on the locator
device while others use the graphics display device. When the echo selector is in the range 2 thru
8, the graphics display device will be used in echoing. All of the echoes on the graphics display
start at a point on the graphics display called the locator echo position (see SET_ECHO_PQOS).
For some of these echoes the locator echo position is also used as a fixed reference point. For
example, the fixed end of the rubber band line will be at the locator echo position. The echoes
available are:

2. Small cursor
Track the position of the locator on the graphics display device. The initial position of the
cursor is at the locator echo position. The point returned is the locator position.

3. Full cross hair cursor
Designate the position of the locator on the graphics display device with two intersecting
lines. One line is horizontal with a length equal to the width of the logical display surface.
The other line is vertical with a length equal to the height of the logical display surface. The
initial point of intersection is at the current locator echo position. The point returned is the
locator position.

4. Rubber band line
Designate the endpoints of a line. One end is fixed at the locator echo position; the other is
designated by the current locator position. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned is the locator position.

222 Graphics Procedure Reference

5. Horizontal rubber band line
Designate a horizontal line. One endpoint of the line is fixed at the locator echo position;
the other endpoint has the world Y-coordinate of the locator echo position and the world
X-coordinate of the current locator position. The locator position can be told from the
locator echo position by the presence of a small cursor (echo 2) at end representing the
locator echo position. The point returned will have the X-coordinate of the locator position
and the Y-coordinate of the locator echo position.

6. Vertical rubber band line
Designate a vertical line. One endpoint of the line is fixed at the locator echo position; the
other endpoint will have the world X-coordinate of the locator echo position and the world
Y-coordinate of the current locator position. The locator position can be told from the
locator echo position by the presence of a small cursor (echo 2) at end representing the
locator echo position. The point returned will have the X-coordinate of the locator echo
position and the Y-coordinate of the locator position.

7. Snap horizontal / vertical rubber band line
Designate a horizontal / vertical line. One endpoint of the line is fixed at the locator echo
position. The other endpoint will be either a horizontal (see echo 5) or vertical (see echo 6)
rubber band line, depending on which one produces the longer line. If both lines are of
equal length, a horizontal line will be used. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned is the endpoint of the echoed line.

8. Rubber band box
Designate a rectangle. The diagonal of the rectangle is the line from the locator echo
position to the current locator position. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned will be the locator position.

Echo selectors of 1 and greater than or equal to 9 produce a device dependent echo on the
locator device. Most locator devices support at least one form of echoing. Possible ones include
beeping, displaying the value entered, or blinking a light each time a point is entered. If the
specified echo is not supported on the enabled locator device, echo 1 will be used.

Echoes on Raster Displays
Raster displays support all the echoes described under *‘Echo Types.’

’

Echoes on HPGL Plotters

Hard copy plotting devices (such as the 9872 or the 7580) cannot perform all the echoes listed
above. The closest approximation possible is used for simulating them. The actual echo per-
formed may also depend on whether the plotter is also being used as the locator. The echoes
available on plotters are:

2. Small cursor

Initially the plotter’s pen will be moved to the locator echo position. The pen will then
reflect the current locator position (i.e., track) until the locator operation is terminated.

3. Full cross hair cursor
Simulated by ECHO #2.

4. Rubber band line
Simulated by ECHO #2.

Graphics Procedure Reference

5. Horizontal rubber band line
If the plotter is not the current locator device, the plotter’s pen will initially be moved to the
current locator echo position. The pen will then reflect the X coordinate of the current
locator position and the Y coordinate of the current locator echo position.

If the plotter is used as the locator, this echo is simulated by echo 2 except the current
locator X coordinate and the locator echo position Y coordinate are returned.

6. Vertical rubber band line
If the plotter is not the current locator device, the plotter’s pen position will initially be
moved to the current locator echo position. The pen will then reflect the X coordinate of the
current locator echo position and the Y coordinate of the current locator position.

If the plotter is used as the locator, this echo is simulated by echo 2 except the locator echo
position X coordinate and the current locator Y coordinate are returned.

7. Snap horizontal / vertical rubber band line
Designate a horizontal / vertical line. One endpoint of the line is fixed at the locator echo
position. The other endpoint will be either a horizontal (see echo 5) or vertical (see echo 6)
rubber band line, depending on which one produces the longer line. If both lines are of
equal length, a horizontal line will be used. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned is the endpoint of the echoed line.

8. Rubber band box
Simulated by echo 2. The point returned will be the locator position.

Absolute Locators (Graphics Tablet or Plotter)

For HPGL graphics tablets the operator positions the stylus to the desired position and depresses it.
The button value returned is always one. For an echo selector of 1 the tablet beeper is sounded
when the stylus is depressed. An echo selector greater than or equal to 9 uses the same echo as an
echo selector of 1. (Some HPGL plotters have the ability of using the physical pen as a locator. See
the subsequent section called ‘“HPGL Plotters as Absolute Locators” for details.)

Relative Locators (Knob or Mouse)
When the knob is specified as the locator (LOCATOR_INIT with device selector of 2) the keyboard
keys have the following meanings:

Arrow keys Move the cursor in the direction indicated.

Knob Move the cursor right and left.

Knob with shift key Move the cursor up and down.

pressed

Mouse Move the cursor in the direction of mouse movement (mouse left = cursor
left; mouse forward = cursor up; etc.).

Number keys Change the amount the cursor is moved per arrow keypress or knob

1—-9 rotation. 1 provides the least movement and 9 provides the most.

All other keys act as the locator buttons. The ordinal value of the locator button (key) struck is
returned in BUTTON.

For an echo selector of 1 the position of the locator is indicated by a small crosshair cursor on the
graphics display.

98615-90035, rev: 3/85

223

224 Graphics Procedure Reference

The initial position of the cursor is located at the current starting position of the graphics display.
This is the point obtained by the last invocation of await_locator, or the lower left hand corner of
the locator limits if no point has been received since LOCATOR_INIT was executed. For back to
back AWAIT_LOCATOR calls this would mean the second AWAIT_LOCATOR would begin
were the first AWAIT_LOCATOR left the cursor. Echo selectors greater than or equal to 9 have

the same effect as an echo selector of 1.

Locatorinput can be echoed on either a graphics display device or a locator device. Echoes 2 thru
8 are explained above under ‘‘Echoes on Raster Displays’™ and “‘Echoes on HPGL Plotters™. For
an echo selector of O or 1 the pen tracks the locator position. Echo selectors greater than or equal
to 9 have the same effect as an echo selector of 1.

HPGL Plotters as Absolute Locators

The AWAIT_LOCATOR function enables a digitizing mode in the device. For HPGL plotters the
operator then positions the pen to the desired position with the cursor buttons or joy stick and
then presses the enter key. The pen state (0 for 'up’, and 1 for "down’) is returned in the button
parameter.

Following locator input (echo on the locator device), the pen position will remain at the last
position it was moved to by the operator. This means that the starting position for the next
graphics primitive will be wherever the pen was left.

Locatorinput can be echoed on either a graphics display device or alocator device. Echoes 2 thru
8 are explained above under “‘Echoes on Raster Displays’ and “‘Echoes on HPGL Plotters’. For
an echo selector of 0 or 1 the pen tracks the locator position. Echo selectors greater than or equal
to 9 have the same effect as an echo selector of 1.

Error Conditions

The graphics system must be initialized and the locator device must be enabled or the call will be
ignored. If the echo selector is between 1 and 9 and the graphics display is not enabled, the call
will be completed with an echo selector of 1. If any of the preceding errors are encountered, an
ESCAPE (-27) is generated, and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference

CLEAR _DISPLAY

IMPORT: dgl_lib

This procedure clears the graphics display.

Syntax

CLEAR_DISPLAY

Procedure Heading
PROCEDURE CLEAR_DISPLAY

Semantics

The graphics system provides the capability to clear the graphics display of all output primitives at
any time in an application program. This procedure has different meaning for different graphics
display devices. CLEAR_DISPLAY makes the picture current. The starting position is not
effected by this procedure.

HPGL Plotters
Plotters with page advance will be sent a command to advance the paper. On devices such as
fixed page plotters, a call to CLEAR_DISPLAY simply makes the picture current.

Raster Displays
On CRT displays, this procedure clears the display to the background color. This means slightly
different things on different displays:

Monochrome If color table location 0 is 0 then the display is cleared to black. Otherwise, the
display is cleared to white.

HP 98627A The display is cleared to the non-dithered color closest to the color repre-
sented specified by color table location 0. (e.g., If color table location 0 was
Red =.5, Green=.2, Blue =0, the display would be cleared to red.)

HP Model 36C The display is cleared to the color represented by color table location 0.

Error conditions:

The graphics system must be initialized and a display must be enabled or the call will be ignored,
an ESCAPE (- 27) will be generated, and the GRAPHICSERROR function will return a non-zero
value.

225

226 Graphics Procedure Reference

CONVERT WTODMM

IMPORT: dgl_lib

This procedure converts from world coordinates to millimetres on the graphics display.

Syntax

CONVERT_WTo0MH)—=(() 0 O O 0

Item Description/Default Re?t?ilgﬁ)ns
world x Expression of TYPE REAL -
world y Expression of TYPE REAL -
metric x name Variable of TYPE REAL -
metric y name Variable of TYPE REAL —

Procedure Heading
PROCEDURE CONVERT_WTODMM (Wiy WY : REALS
VAR MmX s MmY : REAL)i

Semantics

This procedure returns a coordinate pair (metric X,metric Y) representing the world X and Y
coordinates. The metric X and Y values are the number of millimetres along the X and Y axis from
the supplied world coordinate point to the origin of the metric coordinate system on the device.
The location of this origin is device dependent.

For raster devices, the metric origin is the lower-left dot. For HPGL plotters. it is the lower-left
corner of pen movement.

Since the origin of the world coordinate system need not correspond to the origin of the physical
graphics display, converting the point (0.0,0.0) in the world coordinate system may not result in
the value (0.0,0.0) offset from the physical display device's origin.

CONVERT_WTODMM will take any world coordinate point, inside or outside the current
window, and convert it to a point offset from the physical display device’s origin.

Error conditions:

The graphics system must be initialized and the graphics display must be enabled or the call will
be ignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

Graphics Procedure Reference

CONVERT_WTOLMM

IMPORT: dgl_lib

This procedure converts from world coordinates to millimetres on the locator surface.
Syntax

CEEIID SO S i RO i O 0 S O

Item Description/Default Regili?:st}:)ns
world x expression of TYPE REAL -
world y expression of TYPE REAL -
metric X name variable of TYPE REAL -
metric y name variable of TYPE REAL -

Procedure Heading
PROCEDURE CONVERT_WTOLMM (Wiy WY : REALS
VAR Mm¥X s+ MmY¥ : REAL)3

Semantics

This procedure returns a coordinate pair (metric x,metric y) representing the world X and Y
coordinates. The metric x and y values are the number of millimetres along the X and Y axis from
the supplied world coordinate point to the origin of the metric coordinate system on the device.
The location of this origin is device dependent.

For raster devices, the metric origin is the lower-left dot. For HPGL plotters, it is the lower-left
corner of pen movement.

Since the origin of the world coordinate system need not correspond to the origin of the physical
locator device, converting the point (0.0,0.0) in the world coordinate system does not necessarily
result in the value (0.0,0.0) offset from the physical locator device’s origin.

CONVERT_WTOLMM will take any world coordinate point, inside or outside the current
window, and convert it to a point offset from the physical locator origin.

Error Conditions

The graphics system must be initialized, the graphics device must be enabled, and the locator
must be initialized or the call will be ignored, an ESCAPE (—27) will be generated, and
GRAPHICSERROR will return a non-zero value.

227

228 Graphics Procedure Reference

DISPLAY FINIT

IMPORT: dgl_lib

This procedure enables the output of the graphics library to be sent to a file.

Syntax
O) O O
(-‘ error variable
name |'(:>""

. Range Recommended
Item Description/Default Restrictions Range
file name Expression of TYPE Gstring255; can be a | Must be a valid -
STRING of any length up to 255 charac- | file name (see
ters. “The File
Systemn’”)
device specifier Expression of TYPE Gstring255, can be a | 9872A, 9872B. -
STRING of any length up to 255 charac- | 9872C, 9872S.
ters. First six characters are significant. 9872T, 7470A,
7475A, 7550A
and 7586B
control value Expression of TYPE INTEGER MININT thru see below
MAXINT
error variable name | Variable of TYPE INTEGER - -
Procedure Heading
PROCEDURE DISPLAY_FINIT (File_Name : Gstrind255,
Device_Name: Gstrind233,
Control : INTEGER s
var Ierr : INTEGER)

Semantics

DISPLAY_FINIT allows output from the graphics library to be sent to a file. This file can then be
sent a graphics display device by use of the operating system’s file system (e.g. FILER, or SRM
spooler). The contents of the file are device dependent, and MUST be sent only to devices of the
type indicated in device name when the file was created.

The file name specifies the name of the file to send device dependent commands to.

The device specifier tells the graphics system the type of device that the file will be sent to. Only
some types of devices may be use this command. For example raster devices (i.e. the internal
display) may not use this command. For the currently supported devices, see the range restric-
tions under Syntax, above.

Graphics Procedure Reference 229

The control value is used to control characteristics of the graphics display device and should be
set according to the display device the file is intended for. See ‘‘Control Values,”” below, for the
meaning of the control value.

The error variable name will contain a value indicating whether the graphics display device was
successfully initialized.

Value Meaning
0 The graphics display device was successfully initialized.
1 The graphics display device (indicated by device name) is not supported by the

graphics library.

2 Unable to open the file specified. File error is returned in Escapecode, and loresult (see
the Pascal Language System User’s manual).

DISPLAY_FINIT enables a file as the logical graphics display. The file can be of any type,
although the current spooling mechanisms can only handle TEXT and ASCII files. The file need
not exist before this procedure is called. If this procedure is successful the file will be closed with
"LOCK’ when DISPLAY_TERM is executed.

This procedure initializes and enables the graphics display for graphics output. Before the device
is initialized the device status is 0, the device address is 0, and the device name is the default
name. The default name is’’ (six ASCII blanks).

When the device is enabled the device status is set to 1 (enabled) and the internal device specifier
used by the graphics library is set to the file name provided by the user. The device name is set to
the supplied device name. This information is available by calling INQ_WS with operation
selectors of 11050 and 12050.

Initialization includes the following operations:

® The graphics display surface is cleared (e.g., CRT erased, plotter page advanced) if Bit 7 of
CONTROL is not set.

® The starting position is set to a device dependent location.
® The logical display limits are set to the default limits for the device.

® The aspect ratio of the virtual coordinate system is applied to the logical display limits to
define the limits of the virtual coordinate system.

o All primitive attributes are set to the default values.
® The locator echo position is set to its default value.

230 Graphics Procedure Reference

Only one graphics output device can be initialized at a time. If a graphics display device is
currently enabled. the enabled device will be terminated (via DISPLAY_TERM) and the call will
continue.

A call to MOVE or INT_MOVE should be made after this call to update the starting position and in
so doing, place the physical pen or beam at a known location on the graphics display device.

The Control Value
The control value is used to control characteristics of the graphics display device. Bits should be
set according to the following bit map. All unused bits should be set to 0.

ojlofoflojolololojoflojoO|O]lO}|OfO
15|14|13|12|11{10]9| 8| 7| 654|321

Bits Meaning
0 thru 6 Currently unused. Should be set to 0.
7 If this bit is set (BIT 7 = 1). it will inhibit clearing of the graphics display as part of

the DISPLAY_FINIT procedure. Some devices have the ability to not clear the
graphics display. or not to perform a page advance during device initialization.
This bit is ignored on devices that do not support the feature.

8 thru 15 Not used by DISPLAY_FINIT.

HPGL Plotter Initialization
When an HPGL device is initialized the following device dependent actions are performed, in
addition to the general initialization process:

e Pen velocity. force, and acceleration are set to the default for that device.

e ASCII character set is set to "ANSI ASCII".

e Paper cutter is enabled (HP 9872S / HP 9872T).

e Advance page option is enabled (HP 9872S / HP 9872T / HP 7550A).

e Paper is advanced one full page (HP 9872S / HP 9872T / HP 7550A) (unless DISPLAY_INIT
CONTROL bit 7 is set).

e The automatic pen options are set (HP 7580 / HP 7585 / HP 7586B / HP 7550A).

The default initial dimensions for the HPGL plotters supported by the graphics library are:

Wide High Wide High Resolution

Plotter mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 524.25 32380 20970 6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 7593 40.0
7470 257.5 191.25 10300 7650 7427 40.0
7550 411.25 254.25 16450 10170 6182 40.0
7475 416 259.125 16640 10365 6229 40.0

Any device not in this list is not supported.

Graphics Procedure Reference 231

The default logical display surface is set equal to the maximum physical limits of the device. The
view-surface is always justified in the lower left corner of the current logical display surface
(corner nearest the turret for the HP 7580 and HP 7585 plotters). The physical origin of the
graphics display is at the lower left boundary of pen movement.

Error Conditions
If the graphics system is not initialized, the call is ignored, an ESCAPE (—27) is generated, and
GRAPHICSERROR returns a non-zero value.

232

Graphics Procedure Reference

DISPLAY_INIT

IMPORT: dgl_lib

This procedure enables a device as the logical graphics display.

Syntax

device control \ error variable
D1spLAYINIT—~(() O O e 0

Item Description/Default Regérlirgt;ieons Recc;}n;::}epnded
device selector Expression of TYPE INTEGER MININT to
MAXINT
control value Expression of TYPE INTEGER MININT to
MAXINT
error variable name | Variable of TYPE INTEGER -
Procedure Heading
PROCEDURE DISPLAY_INIT (Dev_Adr : INTEGER:
Control : INTEGER:
YAR IErr : INTEGER)
Semantics

DISPLAY_INIT enables a device as the logical graphics display. It initializes and enables the
graphics display device for graphics output.

Before the device is initialized the device status is 0, the device address is 0, and the device name
is the default name. The default name is '’ (six ASCII blanks).

When the device is enabled the device status is set to 1 (enabled) and the internal device specifier
used by the graphics library is set equal to the device selector provided by the user. The device
name is set to the device being used. This information is available by calling INQ_WS with
operation selectors 11050 and 12050.

The device selector specifies the physical address of the graphics output device.
e address =3 Primary internal graphics CRT (HP Series 200) (i.e., the display designated as the
console where the command line is displayed)

e address =6 Secondary internal graphics CRT (HP Series 200), if present (i.e., any display
other than the console that does not require a select code and/or bus address to access it)
e 8 = = device selector = = 31 Interface Card Select Code
(HP 98627A default = 28)

@ 100 = = device selector == 3199 composite HPIB/device address

The control value is used to control device dependent characteristics of the graphics display
device.

Graphics Procedure Reference

The error variable name will contain a value indicating whether the graphics display device was
successfully initialized.

Value | Meaning
0 The graphics display device was successfully initialized.
2 Unrecognized device specified. Unable to communicate with a device at the specified

address, non-existent interface card or non-graphics system supported interface card.

If an error is encountered, the call will be ignored.

The graphics library attempts to directly identify the type of device by using its device selector in
some way. The meanings for device address are listed above.

At the time that the graphics library is initialized, all devices which are to be used must be
connected, powered on, ready, and accessible via the supplied device selector. Invalid device
selectors or unresponsive devices result in that device not being initialized and an error being
returned.

Only one graphics output device maybe initialized at a time. If a graphics display device is
currently enabled, the enabled device will be terminated (via DISPLAY_TERM) and the call will
continue.

A call to MOVE or INT_MOVE should be made after this call to update the starting position and in
so doing, place the physical pen or beam at a known location on the graphics display device.

The Control Value
Used to control characteristics of the graphics display device. Bits should be set according to the
following bit map. All unused bits should be set to 0.

ofojojojofjojofojojOj0O]j0O|lO|O|O]|O

15|14|13|12|11|10|{9| 8| 7| 6|5]|4|3|2|1|O

Bits Meaning
0 thru 6 Currently unused. Should be set to 0.
7 If this bit is set (BIT 7 = 1), it will inhibit clearing of the graphics display as part of

the DISPLAY_FINIT procedure. Some devices have the ability to not clear the
graphics display, or not to perform a page advance during device initialization.
This bit is ignored on devices that do not support the feature.

8 thru 15 Bits 8 though 15 are used by some devices to control device dependent features
of those devices.

Bits 8,9, and 10 of DISPLAY_INIT’s CONTROL parameter determine the type of display for the
HP 98627A card and the default dimensions assumed by the graphics system.

233

234 Graphics Procedure Reference

Bits
CONTROL 1098 Description
256 001 USSTD (512 x 390, 60 hz refresh)
512 010 EURO STD (512 x 390, 50 hz refresh)
768 011 USTV (512 x 474, 15.75 Khz horizontal
refresh, interlaced)
1024 100 EURO TV (512 x 512, 50 hz vertical refresh,
interlaced)
1280 101 HIRES (512 x 512, 60 hz)
1536 110 Internal (HP) use only

Out of range values are treated as if CONTROL = 256.

When using a Model 237 display that is designated the console, bit 8 of DISPLAY_INIT’s
CONTROL parameter determines if the entire screen will be used for graphics. A value of 256 (i.e.,
bit 8 =1) turns off the echo of the type-ahead buffer, and allocates the entire screen for graphics.
The type-ahead buffer echo is re-enabled by the DISPLAY_TERM procedure call.

General Initialization Operations
Initialization includes the following operations:

® The graphics display surface is cleared (e.g.. CRT erased. plotter page advanced) unless Bit 7
of the control value is set.

® The starting position is set to a device dependent location. (This is undefined for HPGL
plotters.)

® The logical display limits are set to the default limits for the device.

® The aspect ratio of the virtual coordinate system is applied to the logical display limits to
define the limits of the virtual coordinate system.

¢ All primitive attributes are set to the default values.
® The locator echo position is set to its default value.

e [f the display and locator are the same physical device, the logical locator limits are set to the
limits of the view surface.

Raster Display Initialization
When a raster display is initialized the following device dependent actions are performed, in
addition to the general initialization process:

® The starting position is in the lower left corner of the display.

® Graphics memory is cleared if bit 7 of the control word is 0.

e [nitialize the color table to default values. If the device has retroactive color definition (Model
36C) and the color table has been changed from the default colors, the colors of an image will
change even if bit 7 is set to 1.

® The graphics display is turned on.

® The view surface is centered within the logical display limits.

Graphics Procedure Reference

® The drawing mode (see OUTPUT_ESC) is set to dominate.
e The DISPLAY_INIT CONTROL parameter is used as specified above.

The following table describes the internal raster displays for Series 200 computers:

Wide High Wide High Memory Color
Computer mm mm points points Planes Map
Model 216 160 120 400 300 1 no
Model 217 230 175 512 390 1 no
Model 220 (HP82913A) 210 158 400 300 1 no
Model 220 (HP82912A) 152 114 400 300 1 no
Model 226 120 88 400 300 1 no
Model 236 210 160 512 390 1 no
Model 236 Color 217 163 512 390 4 yes
Model 237 312 234 1024 768 1 no

The HP 98627A is a 3 plane non-color mapped color interface card which connects to an external
RGB monitor. Bits 8,9, and 10 of DISPLAY_INIT's CONTROL parameter determine the type of
display for the HP 98627A card and the default dimensions assumed by the graphics system.

Bits
CONTROL 109 8 Description
256 001 USSTD (512 x 390, 60 hz refresh)
512 010 EURO STD (5612 x 390, 50 hz refresh)
768 011 USTV (5612 x 474, 15.75 Khz horizontal
refresh, interlaced)
1024 100 EURO TV (512 x 512, 50 hz vertical refresh,
interlaced)
1280 101 HIRES (612 x 512, 60 hz)
1536 110 Internal {HP) use only

Out of range values are treated as if CONTROL = 256.

The physical size of the HP 98627A display (needed by the SET_DISPLAY_LIM procedure) may
be given to the graphics system by an escape function (OPCODE = 250). The physical limits
assumed until the escape function is given are:

CONTROL = 256 153.3mm wide and 116.7mm high.
512 153.3mm wide and 116.7mm high.

768 153.3mm wide and 142.2mm high.

1280 153.3mm wide and 153.3mm high.

The default logical display surface of the graphics display device is the maximum physical limits of
the screen. The physical origin is the lower left corner of the display.

The view surface is always centered within the current logical display surface.

235

236 Graphics Procedure Reference

HPGL Plotter Initialization
When an HPGL device is initialized the following device dependent actions are performed, in
addition to the general initialization process:

® Pen velocity, force, and acceleration are set to the default for that device.

® ASCII character set is set to "ANSI ASCII'.

® Paper cutter is enabled (HP 9872S / HP 9872T).

® Advance page option is enabled (HP 9872S / HP 9872T / HP 7550A /HP 7586B).

® Paper is advanced one full page (HP 9872S / HP 9872T / HP 7550A / HP 7586B) (unless
DISPLAY_INIT CONTROL bit 7 is set).

® The automatic pen options are set (HP 7580 / HP 7585).

The default initial dimensions for the HPGL plotters supported by the graphics library are:

Wide High Wide High Resolution

Plotter mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 524.25 32380 20970 6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7470 2575 191.25 10300 7650 7427 40.0
7550 411.25 254.25 16450 10170 6182 40.0
7475 416 259.125 16640 10365 6229 40.0

The maximum physical limits of the graphics display for an HPGL device not listed above are
determined by the default settings of P1 and P2. The default settings of P1 and P2 are the values
they have after an HPGL 'IN’ command. Refer to the specific device manual for additional
details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
DISPLAY_INIT is invoked. The view surface is always justified in the lower-left corner of the current
logical display surface (corner nearest the turret for the HP 7580, HP 7585 and HP 7586 plotters).
The physical origin of the graphics display is at the lower-left boundary of pen movement.

Note
If the paper is changed in an HP 7580, HP 7585 or HP 7586 plotter
while the graphics display is initialized, it should be the same size of
paper that was in the plotter when DISPLAY_INIT was called. If a
different size of paper is required, the device should be terminated
(DISPLAY_TERM) and re-initialized after the new paper has been
placed in the plotter.

Error Conditions
The graphics system must be initialized or the call will be ignored, an ESCAPE (—27) will be
generated, and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference 237

DISPLAY _TERM

IMPORT: dgl_lib

This procedure disables the enabled graphics display device.

Syntax

DISPLAY_TERM

Procedure Heading
PROCEDURE DISPLAY_TERM;

Semantics

DISPLAY_TERM terminates the device enabled as the graphics display. DISPLAY_TERM
completes all remaining display operations and disables the logical graphics display. It makes the
picture current and releases all resources being used by the device. The device name is set to the
default name ’ ’ (six ASCII blanks), the device status is set to O (not enabled) and the device
address is set to 0. DISPLAY_TERM does not clear the graphics display.

The graphics display device should be disabled before the termination of the application prog-
ram. DISPLAY_TERM is the complementary routine to DISPLAY_INIT.

Error Conditions

The graphics system should be initialized and the display should be enabled or the call will be
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

238 Graphics Procedure Reference

GRAPHICSERROR

IMPORT: dgl_lib

This function returns and integer error code and can be used to determine the cause of a graphics
escape.

Syntax

GRAPHICSERROR

Function Heading
FUNCTION GRAPHICSERROR: INTEGER;

Semantics

When an error occurs that uses the escape function, escape-code — 27 is used. After the escape is
trapped and it has been determined that the graphics library is the source of the error (the escape
code equal to —27), GRAPHICSERROR can be used to determine the cause of the error. The
function returns the value of the last error generated and then clears the value of the return error.
A user who is trapping errors and wishes to keep the value of the error must save it in some
variable.

The following list of returned values and the error they represent can be used to interpret the
value returned by GRAPHICSERROR.

Value Meaning

0 No errors since the last call to GRAPHICSERROR or since the last call to GRAPHICS_INIT.

1 The graphics system is not initialized. ACTION: CAll ignored.

2 The graphics display is not enabled. ACTION: Call ignored.

3 The locator device is not enabled. ACTION: Call ignored.

4 Echo value requires a graphics display to be enabled. ACTION: Call completes with echo
value = 1.

5 The graphics system is already initialized. ACTION: Call ignored.

6 lllegal aspect ratio specified. X-SIZE and Y-SIZE must be greater than 0. ACTION: Call
ignored.

7 lllegal parameters specified. ACTION: Call ignored.
The parameters specified are outside the physical display limits. ACTION: Call ignored.

9 The parameters specified are outside the limits of the window. ACTION: Call ignored.

10 The logical locator and the logical display are the same physical device. The logical locator

limits cannot be defined explicitly, they must correspond to the logical view surface limits.
ACTION: Call ignored.

11

13
14
18

Graphics Procedure Reference

The parameters specified are outside the current virtual coordinate system boundary.
ACTION: Call ignored.

The parameters specified are outside the physical locator limits. ACTION: Call ignored.
Color table contents cannot be inquired or changed. ACTION: Call ignored.

The number of points specified for a polygon or polyline operation is less than or equal to
zero. ACTION: Call ignored.

239

240 Graphics Procedure Reference

GRAPHICS INIT

IMPORT: dgl_lib

This procedure initializes the graphics system.

Syntax

Procedure Heading
PROCEDURE GRAPHICS_INIT;

Semantics
GRAPHICS_INIT initializes the graphics system. It must be the first graphics system call made by
the application program. Any procedure call other than GRAPHICS_INIT will be ignored.
GRAPHICS_INIT performs the following operations:

® Get dynamic storage space for the graphics library.

® Sets the aspect ratio to 1.

® Sets the virtual coordinate and viewport limits to range from 0 to 1.0 in the X and Y
directions.

® Sets the world coordinate limits to range from —1.0 to 1.0 in the X and Y directions.
e Sets the starting position to (0.0,0.0) in world coordinate system units.

e Sets all attributes equal to their default values.

GRAPHICS_INIT does not enable any logical devices. The graphics system is terminated with a
call to GRAPHICS_TERM. Calling GRAPHICS_INIT while the graphics system is initialized will
result in an implicit call to GRAPHICS_TERM, before the system is reinitialized.

Graphics Procedure Reference

GRAPHICS_TERM

IMPORT: dgl_lib

This procedure terminates the graphics system.

Syntax

Procedure Heading
PROCEDURE GRAPHICS_TERM;

Semantics

GRAPHICS_TERM terminates the graphics system. Termination includes terminating both the
graphics display and the locator devices. GRAPHICS_TERM does not clear the graphics display.

GRAPHICS_TERM should be called as the last graphics system call in the application program.

GRAPHICS_TERM releases dynamic memory allocated during GRAPHICS_INIT. In order that
this memory actually be returned the compiler option $HEAP_DISPOSE ON$ must be used.

Error Conditions
If the graphics system is not initialized, the call will be ignored, an ESCAPE (—27) will be
generated, and GRAPHICSERROR will return a non-zero value.

241

242 Graphics Procedure Reference

GTEXT

IMPORT: dgl_types dgl_lib

This procedure draws characters on the graphics display.

Syntax

o) ~(D ©

Item | Description/Default { Regfilgs)ns
string Expression of TYPE Gstring255. Can be a string length <= 255
of any length up to 255 characters characters

Procedure Heading
PROCEDURE GTEXT (String : Gstrindg255);

Semantics
The string contains the characters to be output.

GTEXT produces characters on the graphics display. A series of vectors representing the
characters in the string is produced by the graphics system.

When the text string is output, the starting position will represent the lower left-hand corner of the
first character in STRING. Text is normally output from left to right and is printed vertically with
no slant.

After completion of this call, the starting position is left in a device dependent location such that
successive calls to GTEXT will produce a continuous line of text (i.e.,
GTEXT('H’)3 GTEXT(’I’)3isequivalentto GTEXT('HI ") i)

The attributes of color, line-style, line-width, text rotation, and character size apply to text
primitives. However, the text will appear with these attributes only if the graphics device is
capable of applying them to text.

Characters

The character sets provided by the graphics system are the same ones used by the CRT in alpha
mode, namely the standard character set plus.either the Roman extension character set (for all
non-Katakana machines) or the Katakana character set (for Katakana machines).

Graphics Procedure Reference 243

Characters are defined within a cell that has an aspect ratio of 9/15. Tt.¢ character cells are
adjacent, both horizontally and vertically, as shown here.

Control Codes
The following control codes are supported by GTEXT:

IR e R

NS

12 3 4 56 7 8 9

H

4 5 6 7 8 9

Control Program Keyboard

Character Access Access Action

backspace CHR(8) CTRL-H Move one character cell to the left along the text direction
vector (defined by SET_CHAR_SIZE).

linefeed CHR(10) CTRL-J Move down the height of one character cell.

carriage CHR(13) CTRL-M Move back the length of the text just completed.

return

Any other control characters are ignored.

The current position is maintained to the resolution of the display device. A text size less-than-or-
equal-to the resolution of the display device will result in all the characters in a GTEXT call, or a
series of GTEXT calls, being written to the same point on the device.

The current position returned by an INQ_WS is not updated by calls to GTEXT. If you want to
know the current position aftera GTEXT, you must do a MOVE, or some other call which updates
the current position.

Error Conditions
If the graphics system is not initialized or a display is not enabled, the call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

244 Graphics Procedure Reference

INPUT_ESC

IMPORT: dgl_lib

This procedure allows the user to obtain device dependent information from the graphics
system.

Syntax

operation INTEGER REAL
weu_gesc () O

INTEGER REAL array error variable

array name name name

Item Description/Default Re]:tiriirgii)ns Rec%n;::;eended

operation selector Expression of TYPE INTEGER MININT to -
MAXINT

INTEGER array Expression of TYPE INTEGER MININT to >0

size MAXINT

REAL array size Expression of TYPE INTEGER MININT to >0
MAXINT

INTEGER array Variable of TYPE ANYVAR - -

name should be array of INTEGERs

REAL array name Variable of TYPE ANYVAR - -

should be array of REAL
error variable name | Variable of TYPE INTEGER - -

Procedure Heading

PROCEDURE INPUT_ESC (Opcode : INTEGERS
Isize 3 INTEGER:
Rsize 3 INTEGERS3
ANYVAR Tlist 3 Gint-lists
ANYUAR Rlist : Greal.lists
VAR lerr : INTEGER)3

Graphics Procedure Reference

Semantics

The operation selector determines the device dependent inquiry escape function being in-
voked.

The INTEGER array size is the number of INTEGER parameters to be returned in the INTEGER
array by the escape function. The correct value for this can be found in the hundred’s place of the
operation selector (see the table below).

The REAL array size is the number of REAL parameters to be returned in the REAL array by the
escape function. The correct value for this can be found in the thousand’s place of the operation
selector (see the table below).

The INTEGER array is the array in which zero or more INTEGER parameters are returned by the
escape function.

The REAL array is the array in which zero or more REAL parameters are returned by the escape
function.

The error variable will contain a code indicating whether the input escape function was
performed.

Value Meaning
0 Inquiry escape function successfully completed.
1 Inquiry operation (operation selector) not supported by the graphics display device.
2 INTEGER array size is not equal to the number of INTEGER parameters to be
returned.
3 REAL array size is not equal to the number of REAL parameters to be returned.

If the error variable contains a non-zero value, the call has been ignored.

INPUT_ESC allows application programs to access special device features on a graphics display
device. The type of information returned from the graphics display device is determined by the
value of operation selector. Possible inquiry escape functions may return the status or the options
supported by a particular graphics display device.

Inquiry escape functions only apply to the graphics display device. INPUT_ESC implicitly makes
the picture current before the escape function is performed.

245

246 Graphics Procedure Reference

HPGL Plotter Operation Selectors
The following inguiry is supported:

Operation
Selector | Meaning

2050 Inquire about current turret.

INTEGER array [1] —1 >> Turret mounted, but its type is unknown
INTEGER array [1] = 0 >> No turret mounted

INTEGER array [1] = 1 >> Fiber tip pens

INTEGER array [1] = 2 >> Roller ball pens

INTEGER array [1] = 3 >> Capillary pens

INTEGER array [2] = 0 >> No turret mounted or turret has no pens
INTEGER array [2] = n >> Sum of these values:
1: Penin stall #1
2: Penin stall #2
4: Penin stall #3
8: Penin stall #4
16: Pen in stall #5
32: Penin stall #6
64: Pen in stall #7
128: Pen in stall #8

For example, if INTEGER array[2] = 3, pens would only be contained in stalls 1 and 2.

Operation selector 2050 is supported on the HP 7475, HP 7550, HP 7580, HP 7585 and HP 7586
plotters.

Error Conditions

If the graphics system is not initialized or a display is not enabled. the call will be ignored, an
ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference

INQ_COLOR_TABLE

IMPORT: dgl_lib
dgl_ing

This procedure inquires the color modeling parameters for an index into the device-dependent
color capability table.

Syntax

entry first second
IN9_COLORTABLE

third
parameter

Item Description/Default Re?t?i?:st!i?)ns
entry selector Expression of TYPE INTEGER >0
first parameter name Variable of TYPE REAL -

second parameter name | Variable of TYPE REAL -
third parameter name Variable of TYPE REAL -

Procedure Heading

PROCEDURE INQ_COLOR_TABLE (Index : INTEGER}:
VAR Colrl : REALS
YAR Coler2 : REALS
YAR Coler3 : REAL 13

Semantics

This routine inquires the color modelling parameters for the specified location in a device-
dependent color capability table.

The entry selector specifies the location in the color capability table. The parameters returned
are for the specified location. The size of the color capability table is device dependent. For raster
displays in Series 200 computers, 32 entries are available.

The first parameter represents red intensity if the RGB model has been selected with the SET
COLOR statement, or hue if the HSL model has been selected.

The second parameter represents green intensity if the RGB model has been selected with the
SET COLOR statement, or saturation if the HSL model has been selected.

The third parameter represents blue intensity if the RGB model has been selected, or luminosity
if the HSL model has been selected.

247

248 Graphics Procedure Reference

A more detailed description of the color models and the meaning of their parameters can be
found under the procedure definition of SET_COLOR_MODEL.

Note
The color table stores color specifications as RGB values. The conver-
sion from RGB to HSL is a one-to-many transformation, and the
following arbitrary assignments may be made during the conversion:

IF Luminosity =0
THEN Hue=0
Saturation=0

IF Saturation=0
THEN Hue=0

Error Conditions

If the graphics system is not initialized, a display device is not enabled, the color table contents
cannot be inquired, or the color table entry selector is out of range, the call isignored, an ESCAPE
(—27) will be generated, and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference

INQ_PGN_TABLE

IMPORT: dgl_lib
dgl_inq

This procedure inquires the polygon style attributes for an entry in the polygon style table.

Syntax

entry density fill orientation
na_pen_TABLE)—=(() O OV i e
edge variable
name

. Range Recommended

Item Description/Default Restrictions Range

entry selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent

density variable Variable of TYPE REAL — -
name
fill orientation Variable of TYPE REAL - -
variable name
edge variable name | Variable of TYPE INTEGER - -

Procedure Heading

PROCEDURE INQ_PGN_TABLE (Index : INTEGERS
VAR Densty : REAL:
VAR Orient : REALS
UAR Edde : INTEGER)3

Semantics
The entry selector specifies the entry in the polygon style table the inquiry is directed at.

The density variable will contain a value between -1 and 1. This magnitude of this value is the
ratio of filled area to non-filled area. Zero means the polygon interior is not filled. One represents
a fully filled polygon interior. All non-zero values specify the density of continuous lines used to fill
the interior. Negative values are used to specify crosshatching. Calculations for fill density are
based on the thinnest line possible on the device and on continuous line-style. If the interior
line-style is not continuous, the actual fill density may not match that found in the polygon style
table.

249

250 Graphics Procedure Reference

The fill orientation variable will contain a value from -90 through 90. This value represents the
angle (in degrees) between the lines used for filling the polygon and the horizontal axis of the
display device. The interpretation of fill orientation is device-dependent. On devices that require
software emulation of polygon styles, the angle specified will be adhered to as closely as possible,
within the line-drawing capabilities of the device. For hardware generated polygon styles, the
angle specified will be adhered to as closely as is possible given the hardware simulation of the
requested density. If crosshatching is specified, the fill orientation specifies the angle of orienta-
tion of the first set of lines in the crosshatching, and the second set of lines is always perpendicular
to this.

The edge variable will contain a 0 if the polygon edge is not to be displayed and a 1 if the polygon
edge is to be displayed. If polygon edges are displayed, they adhere to the current line attributes
of color, line-style, and line-width, in effect at the time of polygon display.

All current devices support 16 entries in the polygon table. The polygon styles defined in the
default tables are defined to exploit the hardware capabilities of the devices they are defined for.

Error Conditions

The graphics system must be initialized, a display must be enabled, and the entry selector must be
in range or the call will be ignored, an ESCAPE (-27) will be generated, and
GRAPHICSERROR will return a non-zero value.

IMPORT: dgl_lib
dgl_inq

Graphics Procedure Reference 251

INQ_ WS

This procedure allows the user to determine characteristics of the graphics system.

Syntax

operation string INTEGER
X)) e () g T e ©) g WTHS e O e SV

REAL
array size

string
variable name

INTEGER
array name

REAL
array name

error
variable name

Item Description/Default Ref;{tirlir::st;iims
operation selector Expression of TYPE INTEGER see below
string size Expression of TYPE INTEGER see below
integer array size Expression of TYPE INTEGER see below
REAL array size Expression of TYPE INTEGER see below
string name Variable of TYPE PACKED ARRAY OF CHAR —
INTEGER array name Variable of TYPE ARRAY OF INTEGER -
REAL array name Variable of TYPE ARRAY OF REAL —

error variable name

Procedure Heading
PROCEDURE INQ_WS

(

Variable of TYPE INTEGER

Orpcode : INTEGERS
Ssize : INTEGERS
Isize 1 INTEGERS
Rsize : INTEGER:
ANYYAR Slist : Geharolists
ANYVAR TIlist : Ginmt_lists
ANYUAR Rlist : Greal_list:?
VAR Ierr : INTEGER) 3

252 Graphics Procedure Reference

Semantics

The operation selector is an integer from the list of operation selectors given below. It is used to
specify the topic of the inquiry to the system.

The string size is used to specify the maximum number of characters that are to be returned in
the string array by the function specified by the operation selector. If there is a 1 in the
ten-thousand’s place a string value will be returned. The number of characters in the string is
returned in the first entry in the INTEGER arrray.

The INTEGER array size is the number of integer parameters that are returned in the integer
array by the function specified by OPCODE. The thousand’s digit of the operation selector is the
number of elements the INTEGER array must contain.

The REAL array size is the number of REAL parameters that are returned in the REAL array by
the function specified by OPCODE. The hundred’s digit of the operation selector is the number of
elements the REAL array must contain.

The string array is a PACKED ARRAY OF CHAR which will contain a string or strings that
represents characteristics of the work station specified by the value of operation selector. The
application program must ensure that string array is dimensioned to contain all of the values
returned by the selected function.

The INTEGER array will contain integer values that represent characteristics of the work station
specified by the value of OPCODE. The application program must ensure that the integer array is
dimensioned to contain all of the values returned by the selected function.

The REAL array will contain REAL values that represent characteristics of the work station
specified by the value of OPCODE. The application program must ensure that the REAL array is

dimensioned to contain all of the values returned by the selected function.

The error variable will return an integer indicating whether the inquiry was successfully per-

formed.
Value Meaning

0 The inquiry was successfully performed.

1 The operation selector was invalid.

2 The INTEGER array size was not equal to the number INTEGER parameters requested
by the operation selector.

3 The REAL array size was not equal to the number of REAL parameters requested by
the operation selector.

4 The string array was not large enough to hold the string requested by the operation
selector.

Graphics Procedure Reference 253

The procedure INQ_WS returns current information about the graphics system to the application
program. The type of information desired is specified by a unique value of OPCODE. The
thousands digit of the operation selector specifies the number of integer values returned in the
integer array and the hundreds digit specifies the number of REAL values returned in the REAL
array. A 1 in the ten-thousand’s place indicates that a value will be returned in the string.

One use of INQ_WS is device optimization: the use of inquiry to enhance the application’s
utilization of the output device. An example of this is using color to distinguish between lines
when a device supports colors, and using line-styles when color is not available. Another example
is maximizing the aspect ratio used, based on the maximum aspect ratio of the display device.

Device dependent information returned by the procedure is undefined if the device being
inquired from is not enabled (e.g., inquire number of colors supported, operation selector 1053,
only returns valid information when the display is enabled).

If the graphics system is not initialized, the call will be ignored and GRAPHICSERROR will return
a non-zero value.

254 Graphics Procedure Reference

Supported Operation Selectors
The operation selectors supported by the system and their meaning is listed below:

Operation
Selector | Meaning
250 | Current cell size used for text.

251

252

253

254

255

256

257

258

259

450

451

REAL Array[1] = Character cell width in world coordinates
REAL Array[2] = Character cell height in world coordinates

Marker size.
REAL Array[1] = Marker width in world coordinates
REAL Array[2] = Marker height in world coordinates

Resolution of graphics display
REAL Array[1] = Resolution in X direction (points/mm)
REAL Array[2] = Resolution in Y direction (points/mm)

Maximum dimensions of the graphics display.
REAL Array[1] = Maximum size in X direction (MM)
REAL Array[2] = Maximum size in Y direction (MM)

Aspect ratios
REAL Array[1] = Current aspect ratio of the virtual coordinate system.
REAL Array[2] = Aspect ratio of logical limits.

Resolution of locator device
REAL Array[1] = Resolution in X direction (points/mm)
REAL Array[2] = Resolution in' Y direction (points/mm)

Maximum dimensions of the locator display.
REAL Array[1] = Maximum size in X direction (MM)
REAL Array[2] = Maximum size in Y direction (MM)

Current locator echo position
REAL array[1] = X world coordinate position
REAL array[2] = Y world coordinate position

Current virtual coordinate limits
REAL array[1] = Maximum X virtual coordinate
REAL array[2] = Maximum Y virtual coordinate

Starting position.
The information returned may not be valid (not updated) following a text call, an escape
function call, changes to the viewing transformation or after initialization of the graphics
display device.

REAL array[1] = X world coordinate position

REAL array[2] = Y world coordinate position

Current window limits
REAL array[1] = Minimum X world coordinate position
REAL array[2] = Maximum X world coordinate position
REAL array[3] = Minimum Y world coordinate position
REAL array[4] = Maximum Y world coordinate position

Current viewport limits
REAL array[1] = Minimum X virtual coordinate
REAL array[2] = Maximum X virtual coordinate
REAL array[3] = Minimum Y virtual coordinate
REAL array[4] = Maximum Y virtual coordinate

Graphics Procedure Reference

Operation
Selector | Meaning
1050 | Does graphics display device support clipping at physical limits?
INTEGER Array[1] = O - No
INTEGER Array[1] = 1 - Yes, to the view-surface boundaries
INTEGER Array[1] = 2 - Yes, but only to the physical limits
of the display-surface.
1051 | Justification of the view surface within the logical display limits.
INTEGER Array[1] = O - View-surface is centered within
the logical display limits
INTEGER Array[1] = 1 - View surface is positioned in the lower
left corner of the logical display limits.
1052 | Can the graphics display draw in the background color? Drawing in the background color
can be used to 'erase’ previously drawn primitives.
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes
1053 | The total number of non-dithered colors supported on the graphics display. The number
returned does not include the background color. (Compare operation selectors 1053, 1054,
and 1075.)
INTEGER Array[1] = number of distinct colors supported.
1054 | Number of distinct non-dithered colors which can appear on the graphics display at one
time. The number returned does not include the background color.
INTEGER Array[1] = number of distinct colors which can appear
on the display device at one time.
1056 | Number of line-styles supported on the graphics display.
INTEGER Array[1] = number of hardware line-styles supported.
1057 | Number of line-widths supported on the graphics display.
INTEGER Array[1] = number of line-widths supported.
1059 | Number of markers supported on the graphics display.
INTEGER Array[1] = # of distinct markers supported.
1060 | Current value of color attribute.
INTEGER Array[1] = Current value of color attribute.
1062 | Current value of line-style attribute
INTEGER Array[1] = Current value of line-style attribute.
1063 | Current value of line-width attribute.
INTEGER Array[1] = Current value.
1064 | Current timing mode.
INTEGER Array(1] = 0 - Immediate visibility
INTEGER Array[1] = 1 - System buffering
1065 | Number of entries in the polygon style table.
INTEGER Array[1] = # styles.
1066 | Current polygon interior color index.

INTEGER Array[1] = Index

255

256 Graphics Procedure Reference

Operation
Selector | Meaning
1067 | Current polygon style index.
INTEGER Array[1] = Index
1068 | Maximum number of polygon vertices that a display device can process.
INTEGER Array[1] = 0 No hardware support.
= N (0<n<32767) Number of vertices supported.
= 32767 The graphics display device uses all
available memory to process polygons
(the maximum number of vertices
is determined by current free memory).
1069 | Does the graphics device support immediate, retroactive change of polygon style for
polygons already displayed?
INTEGER Array[1] = 0 - No.
INTEGER Array[1] = 1 - Yes.
1070 | Does the graphics device support hardware (or low-level device handler) generation of
polygons using INT_POLYGON_DD?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes
1071 | Does the graphics device support immediate, retroactive change for primitives already
displayed?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes
1072 | Can the background color of the display be changed?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes
1073 | Can entries in the color table be redefined using SET_COLOR_TABLE?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes
1074 | Current color model in use.
INTEGER Array[1] = 1 - RGB
INTEGER Array[1] = 2 - HSL
1075 | Number of entries in the color capability table. The number returned does not include the
background color.
INTEGER Array[1] = # entries
1076 | Current polygon interior line-style.
INTEGER Array[1] = Current interior line-style
11050 | Graphics display device association.
String = Name of device path. (Internal device specifier.)
INTEGER Array[1] = Number of characters in the device path.
11052 | Locator device association.

String = Name of device path. (Internal device specifier.)
INTEGER Array[1] = Number of characters in the device path.

Graphics Procedure Reference

Operation
Selector |Meaning

12050 |Graphics display device information.

String = Name of graphics display device.

INTEGER Array[1] = Number of characters in the device name.
INTEGER Array[2] = Status

0 Grapbhics display is not enabled.

=1 Graphics display is enabled.

13052 | Graphics locator device information.
String = Name of the locator device.
INTEGER Array[1] = Number of characters in the device name.
INTEGER Array[2] = Status
= 0 Locator device is not enabled.
1 Locator device is enabled.
INTEGER Array(3] = Number of buttons on the locator device.

Error Conditions
If the graphics system is not initialized, the call will be ignored, an ESCAPE (—27) will be
generated, and GRAPHICSERROR will return a non-zero value.

257

258 Graphics Procedure Reference

INT_LINE

IMPORT: dgl_types
dgl_lib

This procedure draws a line from the starting position to the world coordinate specified.

Syntax

X y
vt Line)—=() 0 D

Item Description/Default Regiilgiins
x coordinate Expression of TYPE Gshortint, This is subrange -32 768 to 32 767
of INTEGER
y coordinate Expression of TYPE Gshortint, This is subrange —32 768 to 32 767
of INTEGER

Procedure Heading
PROCEDURE INT_LINE (¢ Iwxs Iwy : Gshortint)3

Semantics
The x and y coordinate pair is the ending of the line to be drawn in the world coordinate system.

A line is drawn from the starting position to the world coordinate specified by the x and y
coordinates. The starting position is updated to this point at the completion of this call.

The primitive attributes of line style (see SET_LINE_STYLE). line width (see SET_LINE_
WIDTH), and color (see SET_COLOR) apply to lines drawn using INT_LINE.

This procedure is the same as the LINE procedure, with the exception that the parameters are of
type Gshortint (—32 768..32 767). When used with some displays this procedure may perform
about 3 times faster than the LINE procedure. For all other displays this procedure has about the
same performance as the LINE procedure.

The INT_LINE procedure only has increased performance when the following conditions exist:

® The display must be a raster device.
® The window bounds within the range —32 768 to 32 767.
® The window must be less then 32 767 units wide and high.

Graphics Procedure Reference

INT operations are provided for efficient vector generation. Although their use can be mixed with
other, non-integer operations, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Drawing to the starting position generates the shortest line possible. Depending on the nature of
the current line-style, nothing may appear on the graphics display surface. See SET_LINE_
STYLE for a complete description of how line-style affects a particular point or vector.

259

260 Graphics Procedure Reference

INT_MOVE

IMPORT: dgl_types

dgl_lib
This procedure sets the starting position to the world coordinate position specified.
Syntax
(O O O
Item Description/Default Range
p Restrictions
X coordinate Expression of TYPE Gshortint, This is subrange —32 768 to 32 767
of INTEGER
y coordinate Expression of TYPE Gshortint, This is subrange —-32 768 to 32 767
of INTEGER

Procedure Heading
PROCEDURE INT_MOVE (Iwx, Iwy : INTEGER)3

Semantics
The x and y coordinate pair define the new starting position in world coordinates.

INT_MOVE specifies where the next graphical primitive will be output. It does this by setting the
value of the starting position to the world coordinate system point specified by the x and y
coordinate values and then moving the pen (or its logical equivalent) to that point.

The starting position corresponds to the location of the physical pen or beam in all but four
instances: after a change in the viewing transformation, after initialization of a graphical display
device, after the output of a text string, or after the output of an escape function. A call to MOVE
or INT_MOVE should therefore be made after any one of the following calls to update the value
of the starting position and in so doing, place the physical pen or beam at a known
location: SET_ASPECT, DISPLAY_INIT, SET_DISPLAY_LIM, OUTPUT _ESC, TEXT, SET_
VIEWPORT, and SET_WINDOW.

This procedure is the same as the MOVE procedure, with the exception that the parameters are of
type Gshortint (—32 768..32 767). When used with the same display, this procedure can
perform about 3 times faster than the MOVE procedure. For all other displays this procedure has
about the same performance as the MOVE procedure.

Graphics Procedure Reference 261

The INT_MOVE procedure only has increased performance when the following conditions exist:

® The display must be a raster device.
® The window bounds within the range —32 768 to 32 767.
® The window must be less than 32767 units wide and high.

INT operations are provided for efficient vector generation. Although their use can be mixed with
non-integer operations, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Error Conditions
The graphics system must be initialized and a graphics display must be enabled or the call will be
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero

value.

262

Graphics Procedure Reference

INT_ POLYGON

IMPORT: dgl types
dgl_lib
dgl_poly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style exactly as specified (i.e., device-independent results).

Syntax

INT_POLYGON O

operation selector
array name

points x array
name

N Range
Item Description/Default Restrictions
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Gshortint. Gshortintis a sub- —32 768 to 32 767
range of INTEGER.
y array name Array of TYPE Gshortint. Gshortintis a sub- —32 768 to 32 767
range of INTEGER.
operation selector array Array of TYPE Gshortint. Gshortintis a sub- -32 768 to 32 767
name range of INTEGER.

Procedure Heading

PROCEDURE INT_POLYGON (Nroint : INTEGER S
ANYVAR nuecg : Gshortint_lists
ANYUAR Yuec : Gshortint_lists

ANYVAR Opcodes : Gshortint_list)s
Semantics

Points is the number of vertices in the polygon set.

The x and vy coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

Value | Meaning

0 Don'’t display the line for the edge extending to this vertex from the previous vertex.
1 Display the line for the edge extending to this vertex from the previous vertex.
2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a

sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or
the end of the arrays is encountered.)

98615-90035, rev: 11/84

Graphics Procedure Reference

Note

The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

INT_POLYGON is used to output a polygon-set, specified in world coordinates, adhering exactly
to the polygon style attributes that are currently specified. A polygon-set is a set of polygons
(called ‘‘sub-polygons’) that are treated graphically as one polygon. This is accomplished by
“‘stacking’’ the sub-polygons. The subpolygons in a polygon-set may intersect or overlap each
other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width. A dot will disappear on an edged polygon if the edge is done with
a complementing line.

The filling of polygons also depends on how the sub-polygons ‘‘nest’” within each other. An
“even-odd’’ rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Polygon Filling

263

264 Graphics Procedure Reference

Referto SET_PGN_TABLE, SET_PGN_STYLE, SET_PGN_COLOR, SET_PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0. 1, or 2, it will be treated as if it were equal to 0 and the edge will
not be drawn.

When INT_POLYGON is used. the current position is updated to the end of the last sub-polygon
specified in the polygon-set. The end of the last sub-polygon is defined to be the first (implicit last)
vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call degenerates to
an update of the current position to the first coordinate set in the x and y point arrays (x
coordinate array[1], y coordinate array[1]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

This procedure is the same as the POLYGON procedure, with the exception that the parameters
are of type Gshortint (—32 768..32 767). When used with some displays this procedure may
perform about 3 times faster than the POLYGON procedure. For all other displays this procedure
has about the same performance as the POLYGON procedure.

The INT_POLYGON procedure only has increased performance when the following conditions
exist:

® The display must be a raster device.
® The window bounds are within the range —32 768 through 32 767.
® The window must be less than 32 767 units wide and high.

INT_POLYGON is provided for efficient vector generation. Although its use can be mixed with
MOVE, LINE, POLYLINE, and POLYGON, one dot roundoff errors may result with mixed use
since different algorithms are used to implement each.

Error Conditions

The graphics system must be initialized. a graphics display must be enabled, all parameters must
be within specified limits and the number of points specified must be greater than 0 or the call will
be ignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

Graphics Procedure Reference 265

INT_POLYGON_DD

IMPORT: dgl_types
dgl_lib
dgl_poly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style in a device-dependent fashion.
Syntax

. X arra arra
INT_poLYson_po () O O O
operation selector
array name

. Range
Item Description/Default Res trirgt!ions
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Gshortint. Gshortint is a sub- ~32 768 to 32 767
range of INTEGER.
y array name Array of TYPE Gshortint. Gshortint is a sub- —32 768 to 32 767
range of INTEGER.
operation selector array Array of TYPE Gshortint. Gshortint is a sub- —32 768 to 32 767
name range of INTEGER.
Procedure Heading
PROCEDURE INT_POLYGON_ DD (Neroint : INTEGER
ANYUAR Huec : Gshortint_lists
ANYUVAR Yuec : Gshortint-list}
ANYVAR Orpcodes : Gint_list)i
Semantics

Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

98615-90035, rev: 11/84

266 Graphics Procedure Reference

Value Meaning
0 Don't display the line for the edge extending to this vertex from the previous vertex.
1 Display the line for the edge extending to this vertex from the previous vertex.
2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the
end of the arrays is encountered.)

Note

The first entry in the operation selector array must be 2. since it is the
first vertex of a sub-polygon.

INT_POLYGON_DD is used to output a polygon-set, specified in world coordinates, adhering
within the capabilities of the device to the polygon style attributes that are currently specified. A
polygon-set is a set of polygons (called ‘‘sub-polygons’) that are treated graphically as one
polygon. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width.

The filling of polygons also depends on how the sub-polygons “‘nest’” within each other. An
“even-odd’’ rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

//////////
/

_

NN

.

Polygon Filling

Graphics Procedure Reference

Referto SET_PGN_TABLE, SET_PGN_STYLE, SET_PGN_COLOR, SET_PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0, i.e., the edge will
not be drawn.

When INT_POLYGON_DD is used, the current position is updated to the end of the last
sub-polygon specified in the polygon-set. The end of the last sub-polygon is defined to be the first
(implicit last) vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call
degenerates to an update of the current position to the first coordinate set in the x and y point
arrays (x coordinate array[1], y coordinate array[1]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Device capabilities vary widely. Not all devices are able to draw polygon edges as requested. If a
device is not able to draw polygon edges as requested, they will be simulated in software. The
simulation will always adhere to the edge value in SET_PGN_STYLE and the operation selector

in INT_POLYGON_DD, but the line-style and color of the edge will depend on the capability of
the device to produce lines with those attributes.

Polygon fill capabilities can vary widely between devices. A device may have no filling capabilities
at all, may be able to perform only solid fill, or may be able to fill polygons with different fill
densities and at different fill line orientations. INT_POLYGON_DD tries to match the device
capabilities to the request. If the device cannot fill the request at all, then no simulation is done
and the polygon will not be filled. For HPGL plotters, the fill is simulated. For raster devices, if the
density is greater than 0.5, a solid fill is used, otherwise, the fill is simulated.

In the case where the polygon style specifies non-display of edged, this would result in no visible
output although visible output had been specified. To provide some visible output in this case,
INT_POLYGON_DD will outline the polygon using the color and line-style specified for the fill
lines. However, only those edge segments specified as displayable by the operation selector array
will be drawn. Therefore, if all edge segments are specified as non-displayed, there will still be no
visible output.

Regardless of the capabilities of the device, INT_POLYGON_DD sets the starting position to the
first vertex of the last member polygon specified in the call. If there is only one polygon specified,
the starting position will therefore be set to the first vertex specified.

267

268 Graphics Procedure Reference

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

This procedure is the same as the procedure POLYGON_DEV_DEP, with the exception that the
parameters are of type Gshortint (—32 768..32 767). When used with some displays this
procedure may perform about 3 times faster than the POLYGON_DEV_DEP procedure. For all
other displays this procedure has about the same performance as the POLYGON_DEV_DEP
procedure.

The INT_.POLYGON_DD procedure only has increased performance when the following condi-
tions exist:)

® The display is a raster device.
® The window bounds are within the range —32 768 through 32 767.
® The window is less then 32 767 units wide and high.

INT_POLYGON_DD is provided for efficient vector generation. Although its use can be mixed
with MOVE, LINE, POLYLINE, and POLYGON_DEV_DEP, one dot roundoff errors may result
with mixed use since different algorithms are used to implement each.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (Points) must be greater than 0 or the call will
be ignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero

value.

Graphics Procedure Reference

INT_POLYLINE

IMPORT: dgl_types
dgl_lib

This procedure draws a connected line sequence starting at the specified point.

Syntax

o)D)~ O~ 0

. Range
Item Description/Default Restrictions
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Gshortint. Gshortintis a sub- —-32 768 to 32 767
range of INTEGER.
y array name Array of TYPE Gshortint. Gshortint is a sub- -32 768 to 32 767
range of INTEGER.

Procedure Heading
PROCEDURE INT_POLYLINE (¢ Nets : INTEGER:
ANYUAR Huecs Yuec 1 Gshortint.list)

Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polyline-set. The vertices must be in order. The vertices for the first sub-polyline must be at the
beginning of these arrays, followed by the vertices for the second sub-polyline, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The procedure INT_POLYLINE provides the capability to draw a series of connected lines
starting at the specified point. A complete object can be drawn by making one call to this
procedure. This call first sets the starting position to be the first elements in the x and y coordinate
arrays. The line sequence begins at this point and is drawn to the second element in each array,
then to the third and continues until points-1 lines are drawn.

This procedure is equivalent to the following sequence of calls:

INT_MOVE (¥_coordinate_arrav[l1lsY_coordinate_arrav[11)3
INT_LINE (¥_coordinate_arrav[21¥_coordinate_arrav[23)3}
INT_LINE (¥_coordinate_arravy[3]s¥_coordinate_arrav[31)}

INT_LINE (X_coordinate_arrav[Pointsl:¥Y.coordinate_.arrav[Pointsl);s

98615-90035, rev: 11/84

269

270 Graphics Procedure Reference

The starting position is set to (X_coordinate_array[Points], Y_coordinate_array[Points]) at the
completion of this call.

Specifying only one element, or Points equal to 1, causes a move to be made to the world
coordinate point specified by the first entries in the two coordinate arrays.

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Depending on the nature of the current line-style nothing may appear on the graphics display.
See SET_LINE_STYLE for a complete description of how line-style affects a particular point or
vector.

The primitive attributes of color, line-style, and line-width apply to polylines.

This procedure is the same as the POLYLINE procedure, with the exception that the parameters
are of type Gshortint (—32 768..32 767). When used with some displays this procedure may
perform about 3 times faster than the POLYLINE procedure. For all other displays this procedure
has about the same performance as the POLYLINE procedure.

The INT_POLYLINE procedure only has increased performance when the following conditions
exist:

® The display must be a raster device.

® The window bounds within the range — 32 768 to 32 767.
® The window must be less then 32 767 units wide and high.

INT_POLYLINE is provided for efficient vector generation. Although its use can be mixed with
MOVE, LINE, and POLYLINE, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (points) must be greater than 0 or the call will
beignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

Graphics Procedure Reference

LOCATOR_INIT

IMPORT: dgl_lib

This procedure enables the locator device for input.

Syntax

CETH SO O iP5l o0 o=

. Range
Item | Description/Default | Restrictions
device selector

Expression of TYPE INTEGER I MININT TO MAXINT
Variable of TYPE INTEGER

error variable name

Procedure Heading

PROCEDURE LOCATOR_INIT (Dev._.Adr : INTEGER:
VAR Ierr : INTEGER)3
Semantics
The device selector specifies the physical addresses of the graphics locator device.
Device Selector Locator Device Selected
2 Relative locator, such as knob
or mouse
100..3199 HP-IB device at specified select
code and address

The error variable will contain a value indicating whether the locator device was successfully
enabled.

Value Meaning
0 The locator device was successfully initialized.
2 Unrecognized device specified. Unable to communicate with a device at the specified
address, non-existent interface card or non-graphics system supported interface card.

!
If the error variable contains a non-zero value, the call has been ignored.

LOCATORL_INIT enables the logical locator device for input. Enabling the locator includes
associating the logical locator device with a physical device and initializing the device. The device
name is set to the name of the physical device, the device status is set to 1 (enabled) and the
internal device selector used by the graphics library is set equal to the device selector provided by

the user. This information is available by calling INQ_WS with operation selectors 11052 and
13052.

LOCATOR_INIT implicitly makes the picture current before attempting to initialize the device.

LOCATORL_INIT enables the logical locator device for input. Enabling the locator includes
associating the logical locator device with a physical device and initializing the device.

98615-90035, rev: 3/85

271

272 Graphics Procedure Reference

The graphics library attempts to directly identify the type of device by using its device address in
some way. The meanings of the device address are defined above.

At the time that the graphics library is initialized, all devices which are to be used must be
connected, powered on, ready, and accessible via the specified physical address. Invalid addres-
sed or unresponsive devices result in that device not beinginitialized and an error being returned.

The locator device must be enabled before it is used for input. The locator device is disabled by
calling LOCATOR_TERM.

If the graphics display and the locator are not the same physical device (e.g. HP 9826 display and
HP 9111 locator). then the logical locator limits will be set to the default values for the particular
locator used. If the graphics display and locator are the same physical device (e.g., HP 9826
display and HP 9826 knob locator), then the logical locator limits are set to the current view
surface limits.

The locator echo position is set to the default value (see SET_ECHO_POS).

Only one locator device may be enabled at a time. If a locator is currently enabled, then the
enabled device will be terminated (via LOCATOR_TERM) and the call will continue. The locator
device should be disabled before the termination of the application program. LOCATOR_INIT is
the complementary routine to LOCATOR_TERM.

Absolute Locator Limits (HPGL Plotter or Graphics Tablet)
When the locator device is initialized on an HPGL plotter or graphics tablet, the graphics display is
left unaltered. HPGL devices are initialized to the following defaults when LOCATOR_INIT is

executed:

Plotter/ Wide High Wide High Resolution

Tablet mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 524.25 32380 20970 .6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7470 2575 191.25 10300 7650 .7427 40.0
7550 411.25 254.25 16450 10170 6182 40.0
7475 416 259.125 16640 10365 6229 40.0
9111 300.8 217.6 12032 8704 7234 40.0

The maximum physical limits of the locator for a HPGL device not listed above are determined by
the default settings of P1 and P2. The default settings of P1 and P2 are the values they have after
an HPGL 'IN’ command. Refer to the specific device manual for additional details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
LOCATOR_INIT is invoked.

Graphics Procedure Reference 273

Note
If the paper is changed in an HP 7580 or HP 7585 plotter while the
graphics locator is initialized, it should be the same size of paper that
was in the plotter when LOCATOR_INIT was called. If a different size
of paper is required, the device should be terminated (LOCATOR_
TERM) and re-initialized after the new paper has been placed in the
plotter.

No locator points are returned while the pen control buttons are depressed on HPGL plotters.

Relative Locators (Knob or Mouse) |
When the locator device is initialized, the graphics display is left unaltered. The default initializa-
tion characteristics for the knob on various Series 200 computers is listed below:

Wide High Wide High Resolution
Computer mm mm points points Aspect points/mm
Model 216 160 120 400 300 .75 25
Model 217 230 175 512 390 .7617 2.226
Model 220 (HP82913A) 210 158 400 300 .75 1.905
Model 220 (HP82912A) 152 114 400 300 .75 2.632
Model 226 120 88 400 300 .75 3.333
Model 236 210 160 512 390 7617 2.438
Model 236 Color 217 163 512 390 7617 2.39
Model 237 312 234 1024 768 .75 3.282

The knob uses the current display limits as its locator limits for locator echoes 2 though 8. For all
other echoes the above limits are used. An example of when the two limits may differ follows:

The knob locator is initialized on a Model 226. The graphics display is an HP 98627A color output
card. The resolution of the locator is 0 through 399 in the X dimension, and 0 through 299 in the Y
dimension. The resolution of the display is O through 511 in the X dimension, and O through 389 in
the Y dimension. When AWAIT_LOCATOR is used with echo 4, the locator will effectively have
the HP 98627A resolution for the duration of the AWAIT_LOCATOR call. However, if echo 1 is
used with AWAIT_LOCATOR, the cursor will appear on the Model 226 and the locator has a
resolution of 0 through 399 and 0 through 299. Note that all conversion routines and inquiries will
use the Model 226 limits.

The physical origin of the locator device is the lower left corner of the display.
Error Conditions

The graphics system must be initialized or this call will be ignored, an ESCAPE (-27) will be
generated, and GRAPHICSERROR will return a non-zero value.

98615-90035, rev: 3/85

274 Graphics Procedure Reference

LOCATOR TERM

IMPORT: dgl_lib

This procedure disables the enabled locator device.

Syntax

Procedure Heading
PROCEDURE LOCATOR_TERM;

Semantics

LOCATOR_TERM terminates and disables the enabled locator device. It transmits any termina-
tion sequence required by the device and releases all resources being used by the device. The
device name is set to the default device name (" ’), the device status is set to O (not enabled) and
the device address is set to 0.

LOCATOR_TERM is the complementary routine to LOCATOR_INIT.

If a locator device is used, LOCATOR_TERM should be called before the application program is
terminated.

Error Conditions
The graphics system must be initialized and a locator device enabled or this call will be ignored, an
ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference 275

MAKE_PIC_CURRENT

IMPORT: dgl_lib

This procedure makes the picture current.

Syntax

—=(MAKE_PIC_CURRENT D

Procedure Heading
PROCEDURE MAKE_PIC_CURRENT:

Semantics

The graphics display surface can be made current at any time with a call to MAKE_PIC_
CURRENT. This insures that all previously generated primitives have been sent to the graphics
display device. Due to operating system delays, all picture changes may not have been displayed
on the graphics display upon return to the calling program. MAKE_PIC_CURRENT is most often
used in system buffering mode (see SET_TIMING) to make sure that all output has been sent to
the graphics display device when required.

Before performing any non-graphics library input or output to an active graphics device, (e.g., a
Pascal read or write), it is essential that all of the previously generated output primitives be sent to
the device. If immediate visibility is the current timing mode, all primitives will be sent to the
device before completion of the call to generate them, but if system buffering is used, MAKE_
PIC_CURRENT should be called before performing any non-graphics system 1/O.

The following routines implicitly make the picture current:

AWAIT_LOCATOR DISPLAY_TERM INPUT_ESC
LOCATOR_INIT SAMPLE_LOCATOR

A call to MAKE_PIC_CURRENT can be made at any time within an application program to insure
that the image is fully displayed. MAKE_PIC_CURRENT does not modify the current timing
mode.

Error Conditions
The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

276 Graphics Procedure Reference

MARKER

IMPORT: dgl_lib

This procedure outputs a marker symbol at the starting position.

Syntax

markenr
TEES0 D

e Range Recommended
Item \ Description/Default | Restrictions Range
marker selector Expression of TYPE INTEGER l MININT TO I 1 thru 19
MAXINT

Procedure Heading
PROCEDURE MARKER (MarKer_vmum : INTEGER)3

Semantics

The marker selector determines which marker will be output. There are 19 defined invariant
marker symbols (1-19). They are defined as follows:

1-7 7 - rectangle 13-'3
2-7+ 8 - diamond 14 -4
3-% 9 - rectangle with cross 15-'5
4-°0 10-°0 16-'6
5-'X 11-'7 17 -7
6 - triangle 12-°2 18-'8

19-'9

Marker numbers 20 and larger are device dependent.

MARKER outputs the marker designated by the marker selector. centered about the starting
position. The starting position is left unchanged at the completion of this call.

[f the marker selector specified is greater than the number of distinct marker symbols that are
supported by a device, then marker number 1 (*.") will be used. INQ_WS can be used to inquire
the number of distinct marker symbols that are available on a particular graphics display device.
Depending on a particular display device’s capabilities, the graphics library uses either hardware
or software to generate the marker symbols.

The size and orientation of markers is fixed and not affected by the viewing transformation. The
size of markers is device dependent and cannot be changed.

Only the primitive attributes of color and highlighting apply to markers. However. the marker will
appear with these attributes only if the device is capable of applying them to markers.

Error Conditions
The graphics system must be initialized and a display device enabled or the call will be ignored, an
ESCAPE (- 27) will be generated. and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference

MOVE

IMPORT: dgl_lib

This procedure sets the starting position to the world coordinate specified.

Syntax

X Y
HOVE } (O coordinace [coordinace =)

Item | Description/Default | Re?t?ilgiins
X coordinate Expression of TYPE REAL -
y coordinate Expression of TYPE REAL -
Procedure Heading
PROCEDURE MOVE (Wx»s Wy : REAL)i

Semantics

MOVE specifies where the next graphical primitive will be output. It does this by setting the value
of the starting position to the world coordinate system point specified by the X|Y coordinate
values and then moving the physical beam or pen to that point.

The x and y coordinate pair is the new starting position in world coordinates.

The starting position corresponds to the location of the physical pen or beam in all but four
instances: after a change in the viewing transformation, after initialization of a graphical display
device, after the output of a text string, or after the output of a graphical escape function. A call to
MOVE or INT_MOVE should therefore be made after any one of the following calls to update the
value of the starting position and in so doing, place the physical pen or beam at a known
location: SET_ASPECT, DISPLAY_INIT, SET_DISPLAY_LIM, OUTPUT_ESC, TEXT, SET_
VIEWPORT, and SET_WINDOW.

Error Conditions
The graphics system must be enabled and a display device enabled or this call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

277

278 Graphics Procedure Reference

OUTPUT _ESC

IMPORT: dgl_lib

This procedure performs a device dependent escape function to inquire from the graphics
display device.

Syntax
operation INTEGER REAL
oureut_£s¢)—~() O
INTEGER REAL error variable
array name array name name

. Range Recommended
Item Description/Default Restrictions Range
operation selector Expression of TYPE INTEGER MININT to -
MAXINT
INTEGER array Expression of TYPE INTEGER MININT to >0
size MAXINT
REAL array size Expression of TYPE INTEGER MININT to >0
MAXINT
INTEGER array Any valid variable. - -
name Should be INTEGER array
REAL array name Any valid variable. - -
Should be REAL array
error variable name | Variable of TYPE INTEGER - -
Procedure Heading
PROCEDURE OUTPUT_ESC (Opcode : INTEGER:
Isize @ INTEGER]:
Rsize ¢ INTEGERS
ANYVAR Tlist : Gint_lists
ANYVAR Rlist : Greal-lists

YAR Terr : INTEGER)3

Semantics ‘
The operation selector determines the device dependent output escape function to be per-

formed. The codes supported for a given device are described in the device handlers section of
this document.

The INTEGER array size is the number of INTEGER parameters contained in the INTEGER
array. The thousand’s digit of the operation selector is the number of INTEGER parameters that
the graphics system expects.

Graphics Procedure Reference

The REAL array size is the number of REAL parameters contained in the REAL array by the
escape function. The ten-thousand’s digit of the operation selector is the number of REAL
parameters that the graphics system expects.

The INTEGER array is the array in which zero or more INTEGER parameters are contained.

The REAL array is the array in which zero or more REAL parameters are contained.

The error variable will contain a value indicating whether the escape function was performed.

Value Meaning
0 Output escape function successfully sent to the device.
1 Operation not supported by the graphics display device.
2 The INTEGER array size is not equal to the number of required INTEGER parameters.
3 The REAL array size is not equal to the number of required REAL parameters.
4 lllegal parameters specified.

If the error variable contains a non-zero value, the call has been ignored.

OUTPUT_ESC allows application programs to access special device features on a graphics
display device. The desired escape function is specified by a unique value for opcode.

The type of information passed to the graphics display device is determined by the value of
opcode. The graphics library does not check OUTPUT_ESC parameters which will be sent
directly to the display device. This can lead to device dependent results if out of range values are
sent.

Output escape functions only apply to the graphics display device.

The starting position may be altered by a call to OUTPUT_ESC.

Error Conditions

The graphics system must be initialized and a display device must be enabled or this call will be

ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

279

280 Graphics Procedure Reference

Raster Device Escape Operations

Operation
Selector Function
52 Dump graphics of the currently active display device if it is the console or a bit-mapped display.
Graphics will be dumped to the graphics printer (PRINTER:): if color, all planes are ORed.
53 Await vertical blanking. This escape function will not exit until the CRT is performing vertical
blanking.
The following example shows how to use this function when changing the color table to
reduce flicker.
OQUTPUT.ESC ¢ 53+ 0y Oy dummy s dummy s error)3
SET_COLOR_TABLE (O+ rs g9+ b)3
The color table is not changed until the crt is blank (during a refresh cycle).
Otherwise changing the color map in the middle of a scan would create a screen
that was half the old color, and half the new color for one frame (1/60 sec). To the
eye this would look like a flicker.
250 Specity device limits.
REAL Array [1] = Points (dots) per mm in X direction
REAL Array [2] = Points (dots) per mm in Y direction
1050* Turn on or off the graphics display.
INTEGER array [1] = 0 — turn display off.
INTEGER array [1] <> 0 — turn display on.
1051} Turn on or off the alpha display.
INTEGER array [1] = O — turn display off.
INTEGER array [1] <> 0 — turn display on.
1052 Set special drawing modes. Using this escape function will redefine the meaning of
the set color attribute. For details on how a given drawing mode affects a color see
“Drawing Modes™ in SET_COLOR. This drawing mode does not apply to device
dependent polygons. Out of range values default to dominate drawing mode.
INTEGER array[1] = 0 — Dominate drawing mode.
= 1 — Non-dominate drawing mode.
= 2 — Erase drawing mode.
= 3 — Complement drawing mode.
1053 Dump graphics (from the specified color planes) to the graphics printer (PRINTER:). Also dumps
graphics on a Model 237 if it is the currently active display.
INTEGER array [1] = Color plane selection code.
BIT 1 = 1 — Select plane 1.
(Blue on HP 98627A)
BIT 2 = 1 — Select plane 2.
(Green on HP 98627A)
BIT 3 = 1 — Select plane 3.
(Red on HP 98627A)
BIT 4 = 1 — Select plane 4.
1054 Clear selected graphics planes.

INTEGER Array [1] = O - Clear all planes
INTEGER Array [1] <> 0O - Color plane selection code.

BIT1 =1 Clear plane 1 (Blue on HP 98627A)
BIT2 =1 Clear plane 2 (Green on HP 98627A)
BIT3 =1 Clear plane 3 (Red on HP 98627A)
BIT4 =1 Clear plane 4

1 This operation is not available for the Model 237 computer.

Graphics Procedure Reference 281

Operation
Selector Function
10050 Set all HP 9836C color table locations. This escape function allows the user to

change all locations in the hardware color map with one procedure. The software
maintained color table will be updated by this call. This escape function is the same
as calling SET_COLOR_TABLE with indexes O - 15.

REAL Array [1] = Parml
REAL Array [2] = Parm2 Index O
REAL Array [3] = Parm3

REAL Array [4] = Parml
REAL Array [5] = Parm2 Index 1
REAL Array [6] = Parm3

REAL Array [46] = Parml
REAL Array [47] = Parm2 Index 15
REAL Array [48] = Parm3

Parmll_i Parm2, and Parm3 are defined to be the same as used with SET_COLOR_
TABLE.

The size of the INTEGER array must equal O and the size of the REAL array 48.

The following table shows which escape codes are supported on which Series 200 raster displays:

Operation
Selector 216 217 220 226 236 236 Color 237 98627A
52 yes ves yes yes yes yes ves ves
53 no no no no no ves no no
250 no no no no no no no yes
1050 yes yes yes yes yes yes no yes
1051 yes yes yes yes yes ves no no
1052 yes yes ves yes ves ves yes yes
1053 no no no no no ves yes ves
1054 ves no no yes yes yes no yes
10050 no no no no no yes no no

282 Graphics Procedure Reference

HPGL Plotter Escape Operations

Operation
Selector Function
1052* Enable cutter. Provides means to control the Plotter paper cutters. Paper is cut after it is
advanced.
INTEGER array {1] = O Cutter is disabled.
INTEGER array [1] <> 0 Cutter is enabled.
1052 Set automatic pen. This instruction provides a means for utilizing the smart pen options of
the plotter. Initially, all automatic pen options are enabled.
INTEGER array [1]: BIT1 =1
Lift pen if it has been down for 60 seconds.
BIT2 =1
Put pen away if it has been motionless for 20 seconds.
BIT3 =1
Do not select a pen until a command which makes a mark. This causes the pen to remain
in the turret for the longest possible time.
1053 Advance the paper either one half or a full page.
INTEGER array [1] = 0 >> Advance page half
INTEGER array [1] <> 0 >> Advance page full
2050 Select pen velocity. This instruction allows the user to modify the plotter’s pen speed. Pen
speed may be set from 1 to the maximum for the given device.
INTEGER array [1] = Pen speed (INTEGER from 1 to device max).
INTEGER array [2] = Pen number (INTEGER from 1 to 8; other integers
select all pens)
2051 Select pen force. The force may be set from 10 to 66 gram-weights.
INTEGER array [1] = Pen force (INTEGER from 1 to 8).
1: 10 gram-weights
2: 18 gram-weights
3: 26 gram-weights
4. 34 gram-weights
5: 42 gram-weights
6: 50 gram-weights
7: 58 gram-weights
8. 66 gram-weights
INTEGER array [2] = Pen number (INTEGER 1 to 8; other integers
select all pens)
2052 Select pen acceleration. The acceleration may be set from 1 to 4 G's.
INTEGER array [1] = Pen acceleration (INTEGER from 1 to 4).
INTEGER array [2] = Pen number (INTEGER 1 to 8; other integers select all pens)
Operation
Selector 9872 7470 7475 7550 7580 7585 7586
1052* SIT no no no no no no
1052 no no yes yes yes yes yes
1053 S/T no no ves no no ves
2050 yes yes yes yes yes yes yes
2051 no no yes ves yes yes yes
2052 no no yes ves yes yes yes

Graphics Procedure Reference

POLYGON

IMPORT: dgl_types
dgl_lib
dgl_poly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style exactly as specified (i.e., device-independent results).

Syntax
N X arra arra
POLYBON = O—fposnto () *vane” (D dane” ()
operation selector
array name

Item Description/Default Re?t?gz)ns
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE REAL. -

y array name Array of TYPE REAL. -
operation selector array | Array of TYPE Gshortint. Gshortint is a sub- -32 768 to 32 767
name range of INTEGER.

Procedure Heading

PROCEDURE POLYGON ¢ Nepoint : INTEGER
ANYUAR Avec » Greal.lists
ANY VAR Yuec : Greal.lists

ANYUAR Opcodes : Gshortint_list) s

Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

98615-90035, rev: 11/84

283

284

Graphics Procedure Reference

Value Meaning
0 Don't display the line for the edge extending to this vertex from the previous vertex.
1 Display the line for the edge extending to this vertex from the previous vertex.
2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the
end of the arrays is encountered.)

Note

The first entry in the operation selector array must be 2. since it is the
first vertex of a sub-polygon.

POLYGON is used to output a polygon-set, specified in world coordinates, adhering exactly to
the polygon style attributes that are currently specified. A polygon-set s a set of polygons (called
“sub-polygons’’) that are treated graphically as one polygon. This is accomplished by *‘stacking”
the sub-polygons. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub- polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width. A dot will disappear on an edged polygon if the edge is done with
a complementing line.

The filling of polygons also depends on how the sub-polygons ‘‘nest” within each other. An
“even-odd’’ rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Polygon Filling

Graphics Procedure Reference 285

Referto SET_PGN_TABLE, SET_PGN_STYLE, SET_PGN_COLOR, SET_PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0 and the edge will
not be drawn.

When POLYGON is used, the current position is updated to the end of the last sub-polygon
specified in the polygon-set. The end of the last sub-polygon is defined to be the first (implicit last)
vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call degenerates to
an update of the current position to the first coordinate set in the x and y point arrays (x
coordinate array[1], y coordinate array[1]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points specified must be greater than O or the call will
beignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

286 Graphics Procedure Reference

POLYGON DEV DEP

IMPORT: dgl_types
dgl_lib
dgl_poly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style in a device- dependent fashion.

Syntax
© © O O
L.(operation selector
array name '(:) »

Item Description/Default Re?terlinc?ieons
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE REAL. -

y array name Array of TYPE REAL. -
operation selector array Array of TYPE Gshortint. Gshortintis a sub- -32 768 to 32 767
name range of INTEGER.

Procedure Heading

PROCEDURE POLYGON_DEWV_DEP (Neoint : INTEGER:
ANYUAR Huec : Greal_listi
ANYUVAR Yueg : Greal_listi

ANYUAR Opcodes 1 Gshortint_list);s

Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

98615-90035, rev: 11/84

Graphics Procedure Reference 287

Value Meaning

0 Don't display the line for the edge extending to this vertex from the previous vertex.

Display the line for the edge extending to this vertex from the previous vertex.

2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the
end of the arrays is encountered.)

Note

The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

POLYGON_DEV_DEP is used to output a polygon-set, specified in world coordinates, adhering
within the capabilities of the device to the polygon style attributes that are currently specified. A
polygon-set is a set of polygons (called “‘sub-polygons’) that are treated graphically as one
polygon. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub- polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width.

The filling of polygons also depends on how the sub-polygons ‘‘nest”” within each other. An
“even-odd’’ rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Pongon Filling

288 Graphics Procedure Reference

Referto SET_PGN_TABLE, SET_PGN_STYLE, SET PGN_COLOR, SET_PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device. filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0. 1, or 2, it will be treated as if it were equal to 0, i.e., the edge will
not be drawn.

When POLYGON_DEV_DEP is used, the current position is updated to the end of the last
sub-polygon specified in the polygon-set. The end of the last sub-polygon is defined to be the first
(implicit last) vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call
degenerates to an update of the current position to the first coordinate set in the x and y point
arrays (x coordinate array[1], y coordinate array[1]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Device capabilities vary widely. Not all devices are able to draw polygon edges as requested. If a
device is not able to draw polygon edges as requested, they will be simulated in software. The
simulation will always adhere to the edge value in SET_PGN_STYLE and the operation selector
in POLYGON_DEV_DEP, but the line-style and color of the edge will depend on the capability of
the device to produce lines with those attributes.

Polygon fill capabilities can vary widely between devices. A device may have no filling capabilities
at all, may be able to perform only solid fill, or may be able to fill polygons with different fill
densities and at different fill line orientations. POLYGON_DEV_DEP tries to match the device
capabilities to the request. If the device cannot fill the request at all, then no simulation is done
and the polygon will not be filled. For HPGL plotters, the fill is simulated. For raster devices, if the
density is greater than 0.5, a solid fill is used. otherwise, the fill is simulated.

In the case where the polygon style specifies non-display of edged. this would result in no visible
output although visible output had been specified. To provide some visible output in this case,
POLYGON_DEV _DEP will outline the polygon using the color and line-style specified for the fill
lines. However, only those edge segments specified as displayable by the operation selector array
will be drawn. Therefore, if all edge segments are specified as non-displayed. there will still be no
visible output.

Regardless of the capabilities of the device, POLYGON_DEV_DEP sets the starting position to
the first vertex of the last member polygon specified in the call. If there is only one polygon
specified, the starting position will therefore be set to the first vertex specified.

Graphics Procedure Reference 289

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (Points) must be greater than 0 or the call will
beignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero

value.

290 Graphics Procedure Reference

POLYLINE

IMPORT: dgl_lib

This procedure draws a connected line sequence starting at the specified point.

Syntax

. X array y array
PoLYLINE () O O O

Item Description/Default Rezz:il::st;iims
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE REAL. -

y array name Array of TYPE REAL. -

Procedure Heading
PROCEDURE POLYLINE (Nets » INTEGER:
ANYUVAR Xuecr Yuec : Greal_list)

Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polyline-set. The vertices must be in order. The vertices for the first sub-polyline must be at the
beginning of these arrays, followed by the vertices for the second sub-polyline, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The procedure POLYLINE provides the capability to draw a series of connected lines starting at
the specified point. A complete object can be drawn by making one call to this procedure. This
call first sets the starting position to be the first elements in the x and y coordinate arrays. The line
sequence begins at this point and is drawn to the second element in each array, then to the third
and continues until points-1 lines are drawn.

This procedure is equivalent to the following sequence of calls:

MOVE (X¥_coordinate_arravills¥_coordinate_arravy[11):3
LIME (¥_coordinate_arrav[21s¥_coordinate_arrav[21)3
LINE (¥_coordinate_arrav[3ls¥_coordinate_arrav[31) ;3

LINE (X_coordinate_arrav[Pointslss¥_.coordinate_arrav[Pointsl)s

The starting position is set to (X_coordinate_array[Points], Y_coordinate_array[Points]) at the
completion of this call.

98615-90035, rev: 11/84

Graphics Procedure Reference 291

Specifying only one element, or Points equal to 1, causes a move to be made to the world
coordinate point specified by the first entries in the two coordinate arrays.

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Depending on the nature of the current line-style nothing may appear on the graphics display.
See SET_LINE_STYLE for a complete description of how line-style effects a particular point or
vector.

The primitive attributes of color, line-style, and line-width apply to polylines.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (points) must be greater than 0 or the call will
beignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

292

Graphics Procedure Reference

SAMPLE LOCATOR

IMPORT: dgl_lib

This procedure samples the current locator device

Syntax

echo x coordinate y coordinate
saPLE_L00ATOR)—={ () O O O

Item Description/Default Re?t?i?:st;ieons
echo selector Expression of TYPE INTEGER MININT to MAXINT
X coordinate name Variable of TYPE REAL -

y coordinate name Variable of TYPE REAL -

Procedure Heading

PROCEDURE SAMPLE_LOCATOR Echo : INTEGER:
VAR Wx s Wy @ REAL)i
Semantics
The echo selector determines the level of input echoing. Possible values are:
0 - No echo.
=1 - Echo on the locator device.

The x and y coordinates are the values of the coordinates, expressed in world coordinate units,
returned from the enabled locator device.

SAMPLE_LOCATOR returns the current world coordinate value of the locator without waiting
for any user intervention. Typically, the locator is sampled in applications involving the con-
tinuous input of data points that are very close together.

If the point sampled is outside of the current logical locator limits, the transformed point will still
be returned .

The number of echoes supported by a locator device and the correlation between the echo value
and the type of echoing performed is device dependent. Most locator devices support at least one
form of echoing. Possible echoes are beeping, displaying the point sampled, etc. See the locator
descriptions below to find the locators supported by the various devices. If the echo value is larger
than the number of echoes supported by the enabled locator device, then echo 1 will be used.

Locator echoing can only be performed on the locator device. The locator echo position is not
used in conjunction with any echoes performed while sampling a locator.

Graphics Procedure Reference

SAMPLE_LOCATOR implicitly makes the picture current before sampling the locator.

Relative Locators (Knob or Mouse)

The keyboard beeper is sounded when the locator is sampled if an echo is selected (echo
selector=1). The sample locator function returns the last AWAIT_LOCATOR result or 0.0, 0.0 if
AWAIT_LOCATOR has not been invoked since LOCATOR_INIT.

Absolute Locators (HPGL Plotter or Graphics Tablet)

The SAMPLE_LOCATOR function returns the current locator position without waiting for an
operator response (pen position on plotters). On a 9111A graphics Tablet, the beeper is sounded
when the stylus is depressed. For echo selectors greater than or equal to 9, the same echo as echo
selector 1 is used.

Error Conditions

The graphics system must be initialized and a locator device enabled or this call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

98615-90035, rev: 3/85

293

294 Graphics Procedure Reference

SET _ASPECT

IMPORT: dgl_lib

This procedure redefines the aspect ratio of the virtual coordinate system.

Syntax

(serpspect)0~ o2 (Do 0D

.. Range
Item | Description/Default | Restrictions
X size Expression of TYPE REAL -
y size Expression of TYPE REAL -

Procedure Heading
PROCEDURE SET_ASPECT (X_sizes Y_size : REAL)j

Semantics

The x size is the width of the virtual coordinate system in dimensionless units. The size must be
greater than zero.

The y size is the height of the virtual coordinate system in dimensionless units. The size must be
greater than zero.

SET_ASPECT sets the aspect ratio of the virtual coordinate system, and hence the view surface,
to be y size divided by x size. A ratio of 1 defines a square virtual coordinate system, a ratio greater
than 1 specifies it to be higher than it is wide; and a ratio less than 1 specifies it to be wider than it is
high. Since x size and y size are used to form a ratio, they may be expressed in any units as long as
they are the same units.

The range of coordinates for the virtual coordinate system is calculated based on the value of the
aspect ratio. The coordinates of the longer axis are always set to range from 0.0 to 1.0 and those
of the shorter axis from 0 to a value that achieves the specified aspect ratio. SET_ASPECT
defines the limits of the virtual coordinate system.

ASPECT RATIO (AR) | X LIMITS | v LimITS
AR < 1 0.0, 1.0 0.0, 1.0 * AR
AR = 1 0.0.1.0 0.0, 1.0
AR > 1 0.0, 1.0/AR 0.0, 1.0

Graphics Procedure Reference 295

When a call to SET_ASPECT is made, the graphics system sets the viewport equal to the limits of
the virtual coordinate system. This routine can therefore be used to access the entire logical
display surface. A program could display an image on the entire HP 9826 graphics display, which
has an aspect ratio of 399/299, in the following manner:

SET_ASPECT (399, 299);

To set the aspect ratio to the entire display in a device independent manor, INQ_WS may be used
as follows:

PROCEDURE Set_max_asepect?
CONST Get_aspect=2343

VAR Dummy : INTEGER
Error : INTEGER
Ratio_list: ARRAYL1..2]1 OF REAL}

BEGIN {PROCEDURE Set.max_asrectl
ING_WS (Get_aspect+Q+0+2+Dummy sDummy » Ratio_lists» Error) s
IF Error=0 THEN
SET_ASPECT(1.,0sRatio_list[2]1)3
ENDS {PROCEDURE Set_max.aspect)

The initial value of the aspect ratio is 1, setting the virtual coordinate system to be a square. This
square is mapped to the largest inscribed square on any display surface, so that the viewable area
is maximized. As a result, the initial virtual coordinate system limits range from 0.0 to 1.0 in both
the X and Y directions. A program can access the largest inscribed rectangle on any display
surface by modifying the value of the aspect ratio. The exact placement of the rectangle on the
display surface is device dependent, but it is centered on CRT’s and justified in the lower left hand
corner of plotters.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent the last world coordinate position. A call to MOVE
or INT_MOVE should therefore be made after this call to update the starting position.

If the logical locator is associated with the same physical device as the graphics display, then a call
to SET_ASPECT will set the logical locator limits equal to the new limits of the virtual coordinate
system.

Since the window is not affected by the SET_ASPECT procedure, distortion may result in the

window to viewport mapping if the window does not have the same aspect ratio as the virtual
coordinate system (see SET_WINDOW).

The locator echo position is set to the default value by this procedure.

Error Conditions

The graphics system must be initialized and both X and Y size must be greater than zero or this call
will be ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a
non-zero value.

296 Graphics Procedure Reference

SET CHAR SIZE

IMPORT: dgl_lib

This procedure sets the character size attribute for graphical text.

Syntax

oD , ®

Item l Description/Default | Regérlirgt;ii)ns

width Expression of TYPE REAL —

height Expression of TYPE REAL -
Procedure Heading
PROCEDURE SET_CHAR_SIZE (Width» Height : REAL)3
Semantics
The width is the requested graphics character cell width in world coordinate units. (width <>
0.0)

The height is the requested graphics character cell height in world coordinate units. (height <>
0.0)

SET_CHAR_SIZE sets the character size for subsequently output graphics text. The absolute
value of width and height are used to specify the world coordinate size of a character cell.
Therefore, the actual physical size of a character output is determined by applying the current
viewing transformations to the world coordinate units specification.

The default character size (set by GRAPHICS_INIT and DISPLAY _INIT) is dependent upon the
physical device associated with the graphical display device. The size is determined as follows:

e Height : = .05 x (height of the world coordinate system)
e Width : = .035 x (width of the world coordinate system)

If a change is made to the viewing transformation (by SET_WINDOW, SET_VIEWPORT,
SET_DISPLAY_LIM, or SET_ASPECT), the value of the character size attribute will not be
changed, but the actual size of the characters generated may be modified.

Error Conditions

The graphics system must be initialized, a display must be enabled, and width and height must
both be non-zero or this call will be ignored, an ESCAPE (- 27) will be generated, and
GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference 297

SET_COLOR

IMPORT: dgl_lib

This procedure sets the color attribute for output primitives except for polygon interior fill.

Syntax

CETD S0 S EEa N0

Restrictions
color selector ' Expression of TYPE INTEGER , -

Item ‘ Description/Default \ Range

Procedure Heading
PROCEDURE SET_COLOR (Color : INTEGER)

Semantics
SET_COLOR sets the color attribute for the following primitives:

Lines

Markers
Polylines
Polygon Edges
Text

At device initialization a default color table is created by the graphics system. The size and
contents of the table are device dependent. At least one entry exists for all devices. A call to
INQ_WS with OPCODE equal to 1053 will return the number of colors available on a given
graphics device. Some devices allow the color table to be modified with SET_TABLE.

The color selector is an index into the color table. The contents of the color table are then used to
specify the color when primitives are drawn. On some devices (HPGL plotters), the color selector
maps directly to a pen number for the device. On the HP 9836C, the entries in the color table can
be modified with SET_COLOR_TABLE.

The default value of the color attribute is 1. If the value of the color selector is not supported on
the graphics display, the color attribute will be set to 1.

A color selector of 0 has special effects depending on the graphics display used. For raster
devices, a color selector of O means to draw in the background color. For most plotters, it puts the
pen away.

298 Graphics Procedure Reference

If the device is not capable of reproducing a color in the color table, the closest color which the
device is capable of reproducing is used instead. On some devices, this may depend on the
primitive being displayed. For example, the HP98627A color output interface card is capable of a
large selection of polygon fill colors. but only 8 line colors. Thus, the fill color could match the
selected color much more closely than the line color used to outline the polygon.

Default Raster Color Map
The following table shows the default (initial) color table for the black and white displays (HP
9816 / HP 9920 / HP 9826 / HP 9836):

Index # | Hue|Saturation| Luminosity

0 0

1.0000
0.9375
0.8750
0.8125
0.7500
0.6875
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.1250
0.0625

clNoNoNeoNoNoNoRoloNoloNalaNoNoleNo]
oRoNeNeoReNeNoNoRoNoNoNoNoNolNoRa o)

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Colors 17 though 31 are set to white.
The following table shows the default (initial) color table for the color displays (HP 9836C and HP

98627A):
Index # | Color name Red Green Blue
0 Black 0.000000 | 0.000000 | 0.000000
1 White 1.000000 | 1.000000 | 1.000000
2 Red 1.000000 | 0.000000 | 0.000000
3 Yellow 1.000000 | 1.000000 | 0.000000
4 Green 0.000000 | 1.000000 | 0.000000
5 Cyan 0.000000 [1.000000 | 1.000000
6 Blue 0.000000 [0.000000 | 1.000000
7 Magenta 1.000000 | 0.000000 | 1.000000
3 Black 0.000000 | 0.000000 | 0.000000
9 Olive green | 0.800000 | 0.733333 | 0.200000
10 Aqua 0.200000 | 0.400000 | 0.466667
11 Royal blue 0.533333 | 0.400000 | 0.666667
12 Violet 0.800000 | 0.266667 | 0.400000
13 Brick red 1.000000 | 0.400000 | 0.200000
14 Burnt orange | 1.000000 | 0.466667 | 0.000000
15 Grey brown { 0.866667 | 0.533333 | 0.266667

Colors 9 though 15 are a graphic designers idea of colors for business graphics. Color table
entries not shown above are set to white.

Graphics Procedure Reference 299

Raster Drawing Modes

For raster devices (e.g., HP 9836 display) the effect of the color selectors depends on the current
drawing mode (drawing mode is set using the OUTPUT_ESC function). The color selectors and
their effects are listed below:

Color Color

Selector Selector
Mode =0 >=1
DOMINATE Background Draw
(Default mode) (erase, set (set bits to 1,

bits to 0) overwrite current pattern)
NON-DOMINATE Background Draw

(erase, set (set bits to 1

bits to 0) Inclusive OR

with current pattern)

ERASE Background Background

(erase, set (erase, set

bits to 0) bits to 0)
COMPLEMENT Background Complement

(erase, set (Invert bits in

bits to 0) selected planes)

Plotters
A Color Selector of 0 selects no pens (the current pen is put away). The supported range of Color
Selectors for each supported plotter is:

0 9872A -0 thru 4

¢ 9872B - 0 thru 4

© 9872C/S/T - 0 thru 8

e 7580A/7585A - 0 thru 8
e 7470A - 0 thru 2

Error Conditions
The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

300 Graphics Procedure Reference

SET_COLOR_MODEL

IMPORT: dgl_lib

This procedure chooses the color model for interpreting parameters in the color table.

Syntax

(sereoLonwoeL)+ O o iier (0

L. Range Recommended
Item \ Description/Default l Restrictions I Range
model selector Expression of TYPE INTEGER ‘ MININT thru ‘ lor2
MAXINT

Procedure Heading
PROCEDURE SET_COLOR_MODEL (MODEL : integer);

Semantics

The model selector determines the color model which will be used to interpret the values passed
to the color table with SET_COLOR_TABLE or read from it with INQ_COLOR_TABLE.

Value | Meaning
1 RGB (Red-Green-Blue) color cube.
2 HSL (Hue-Saturation-Luminosity) color cylinder.

The RGB physical model is a color cube with the primary additive colors (red, green, and blue) as
its axes. With this model, a call to SET_COLOR_TABLE specifies a point within the color cube
that has a red intensity value (X-coordinate), a green intensity value (Y-coordinate) and a blue
intensity value (Z-coordinate). Each value ranges from zero (no intensity) to one.

Effects of RGB color parameters

Parm 1 (RED) Parm 2 (GREEN) Parm 3 (BLUE) Resultant color
1.0 1.0 1.0 White
1.0 0.0 0.0 Red
1.0 1.0 0.0 Yellow
0.0 1.0 0.0 Green
0.0 1.0 1.0 Cyan
0.0 0.0 1.0 Blue
1.0 0.0 1.0 Magenta
0.0 0.0 0.0 Black

98615-90035. rev: 11/84

Graphics Procedure Reference 301

The HSL perceptual model is a color cylinder in which:

e The angle about the axis of the cylinder, in fractions of a circle is the hue (red is at O, green is
at 1/3 and blue is at 2/3).

e The radius is the saturation. Along the center axis of the cylinder, (saturation equal zero) the

colors range from white through grey to black. Along the outside of the cylinder (saturation
equal one) the colors are saturated with no apparent whiteness.

® The height along the center axis is the luminosity (the intensity or brightness per unit area).
Black is at the bottom of the cylinder (luminosity equal zero) and the brightest colors are at
the top of the cylinder (luminosity equal one) with white at the center top.

Hue (angle), saturation (radius), and luminosity (height) all range from zero to one. Using this
model, a call to SET_COLOR_TABLE specifies a point within the color cylinder that has a hue

value, a saturation value, and a luminosity value.

Effects of HSL color parameters

Parm 1 (Hue) Parm 2 (Sat) Parm 3 (Lum) Resultant color

Don’t Care 0.0 1.0 White

0.0 1.0 1.0 Red

1/6 1.0 1.0 Yellow

2/6 1.0 1.0 Green

3/6 1.0 1.0 Cyan

4/6 1.0 1.0 Blue

5/6 1.0 1.0 Magenta
Don’t Care Don’t Care 0.0 Black

When a call to SET_COLOR_MODEL switches color models, parameter values in subsequent
calls to SET_COLOR_TABLE then refer to the new model. Switching models does not affect
color definitions that were previously made using another model. Note that when the value of a
color table entry is inquired (INQ_COLOR_TABLE), it is returned in the current model, which
may not be the model in which it was originally specified.

Not all color specifications can be displayed on every graphics device, since the devices which the
graphics library supports differ in their capabilities. If color specification is not available on a
device, the graphics system will request the closest available color.

Error Conditions

The graphics system must be initialized and the color selector must evaluate to 0 or 1 or this call
will be ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a
non-zero value.

302 Graphics Procedure Reference

SET COLOR_TABLE

IMPORT: dgl_lib

This procedure redefines the color description of the specified entry in the color table. This color
definition is used when the color index is selected via SET_COLOR.

Syntax

entry first second
se7_coL0R_TABLE)—~(()

third
parameter

Item Description/Default Rel:t?irgt!ie(ms Rec%rg:]r;inded
entry selector Expression of TYPE INTEGER MININT to device
MAXINT dependent (see
below)
first parameter Expression of TYPE REAL 0 thru 1 -
second parameter Expression of TYPE REAL 0 thru 1 -
third parameter Expression of TYPE REAL 0 thru 1 -

Procedure Heading

PROCEDURE SET_COLOR_TABLE (Index : INTEGER3
Colel : REALS
Colr2 : REAL:
Colr3 @ REAL)3

Semantics

SET_COLOR_TABLE is ignored by some devices (such as pen plotters) which do not allow their
color table to be changed. The procedure INQ _WS (opcode 1073) tells whether the color table
can be changed.

The entry selector specifies the location in the color capability table that is to be redefined. For
raster displays in Series 200 computers, 32 entries are available.

The first parameter represents red intensity if the RGB model has been selected with the SET
COLOR statement, or hue if the HSL model has been selected.

The second parameter represents green intensity if the RGB model has been selected with the
SET COLOR statement, or saturation if the HSL model has been selected.

The third parameter represents blue intensity if the RGB model has been selected, or luminosity
if the HSL model has been selected.

Graphics Procedure Reference 303

A more detailed description of the color models and the meaning of their parameters can be
found under the procedure definition of SET_COLOR_MODEL.

The effect of redefinition of the color table on previously output primitives is device dependent.
On most devices changing the color table will only affect future primitives; however, on the Model
36C changing a color table entry with a color selector from 0 through 15 willimmediately change
the color of primitives previously drawn with that entry. The procedure INQ_WS (opcode 1071)
tells whether retroactive color change is supported.

Monochromatic Displays

All Series 200 computers except the Model 36C have a monochromatic internal CRT. Changing
an entry in the table will not affect the current display; however, future changes to the display will
use the new contents of the table. Device dependent polygons use the color table entry when
performing dithering.

The color that lines are drawn with (black or white) is determined from the perceived intensity of
the color table entry. This is calculated as follows:

if (red * 0.3 + green * 0.59 + blue *0.11) > 0.1
then
color : = white
else
color : = black;

The HP 98627A Display

Changing an entry in the table will not affect the current display; however, future changes to the
display will use the new contents of the table. Device dependent polygons use the color table
entry when performing dithering.

The color that lines are drawn with (one of the 8 non-dithered colors) is determined from the
closest HSL value to the requested value.

The Model 36C

The first 16 locations (0..15) of the color table map directly to the hardware color map. Changing
one of these color table locations will immediately change the display (assuming the color has
been used).

The next 16 locations (16..31) will not affect the current display; however, future changes to the
display will use the new contents of the color table.

Device dependent polygons drawn with color table locations 0..15 will be drawn in a solid color
without using dithering. When drawn with color table location above 15 dithering will be used.

304 Graphics Procedure Reference

Note

Since dithering on the HP 9836C uses the current color map values
(i.e.. color table locations 0..15) changing the first 16 color table
locations will affect the dither pattern used. This leads to two major
effects. First, changing the first 16 locations after a polygon was
generated using dithering will change the dither pattern such that its
averaged color no longer matches the color that it was generated with,
Second, since the dither pattern is based on the first 16 colors, the first
16 colors can be set to produce a dither pattern with minimum color
changes between pixels within the pattern. The following example
produces a continuous shaded polygon across the crt:

$RANGE OFF#$
PROGRAM T3

IMPORT dgl_tveess ddl_lib,y dgl_rolvs

VAR I : INTEGER
Huecs¥uvec : ARRAY [1..21 OF REALS
Ouec : ARRAY [1.,.2]1 OF Gshortints
C : REAL 3

BEGIN

GRAPHICG_INIT:

DISPLAY _INIT(3:+04+1)3
SET_ASPECT(511,389)
SET_WINDOW(O,311,0,388)3

FOR I := 0 to 13 DO
SET_COLOR_TABLE(I»I/153,1/13,1/715) 3 { set ur color mapr ¥

SET_PGN_COLOR ¢

16)1
SET_-PGN_STYLE (16)

1

it

| Yuecl[11l 2= 10035 YueclZ] 1503 Dueecll] 1= 25 Duecl2] == 03
FOrR I := 0 to 511 DO
BEGIN
Huecll1ll = I35 Huecl21 == I3
| C: 1-1/5113
SET_COLOR_TABLE(LIG+CH»LC:CYs { set Polvdon color ¥
POLYGON_DEV_DEP(Z2:XvecsYuecOuec) s
END 3
END .

The color that lines are drawn with (one of the first 16 non-dithered colors) is determined from the
closest HSL value to the requested value.

98615-90035. rev: 11/84

Graphics Procedure Reference 305

Dithered Polygon Fills

All the raster displays use a technique called dithering for filling device dependent polygons. The
polygon is divided into 4 pixel by 4 pixel "dither cells’. The colors that are placed in each pixel
location inside the dither cells average to the current polygon color. The eye will average the
pixels, and see the intended color.

The 98627A has 3 memory planes thus, providing 8 non-dithered colors (white, red, green, blue,
cyan, magenta, and black). Using dithering 4913 polygon colors may be generated. To obtain a
polygon color of half-tone yellow (R = 0.5 G = 0.5B = 0.0) the dither cell would contain 8 black
pixels and 8 yellow pixels.

On black and white displays, the largest r,g,b value of the current_polygon color is used to
determine the dither pattern.

On the HP 9836C the current values of the color map are used to determine the dither cell pixel
colors. This leads to a very very large number of colors that the HP 9836C can produce when
performing device dependent polygon fill.

The Background Color

Color index O represents the background color. The ability to redefine this index is device-
dependent. Many devices do not allow the redefinition of their background color. Whether a
display device has the ability to redefine the background color can be inquired via a call to
INQ_WS with opcode = 1072. All raster displays in the 200 Series are capable of redefining the
background color.

Error Conditions
The graphics system must be initialized and a display device must be enabled or this call will be
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero

value.

306 Graphics Procedure Reference

SET DISPLAY_LIM

IMPORT: dgl_lib

This procedure redefines the logical display limits of the graphics display.

Syntax
minimum maximum minimum
SET_DISPLAY.LIM)—~(())))
maximum erraor
y value variable name

Item Description/Default Re?t?inc%ims
minimum x value Expression of TYPE REAL -
maximum x value Expression of TYPE REAL —
minimum y value Expression of TYPE REAL B
maximum y value Expression of TYPE REAL -
error variable name Variable of TYPE INTEGER -

Procedure Heading

PROCEDURE SET_DISPLAY_LIM (Hmins Hmax s
Ymins Ymax : REAL
VAR Ierr 3 INTEGER)3
Semantics

The minimum x value is the distance in millimetres that the left side of the logical display limits is
offset from the left side of the physical display limits.

The maximum x value is the distance in millimetres that the right side of the logical display limits
is offset from the left side of the physical display limits.

The minimum y value is the distance in millimetres that the bottom of the logical display limits is
offset from the bottom of the physical display limits.

The maximum vy value is the distance in millimetres that the top of the logical display limits is
offset from the bottom of the physical display limits.

The error variable will contain an integer indicating whether the limits were successfully set.

98615-90035, rev: 11/84

Graphics Procedure Reference 307

Value Meaning
0 The display limits were successfully set.
1 The minimum x value was greater than or equal to the maximum x value and/or the

minimum y value was greater than the maximum y value.

2 The parameters specified were outside the physical display limits.

If the error variable is non-zero, the call was ignored.

SET_DISPLAY_LIM allows an application program to specify the region of the display surface
where the image will be displayed. The limits of this region are defined as the logical display limits.
Upon initialization, the graphics system sets these limits equal to some portion of the specified
physical device. This routine allows a programmer to set the plotting surface of a very large plotter
equal to the size of an 8 1/2 x 11 inch paper, for example.

The pairs (minimum x value, minimum y value) and (maximum x value, maximum y value)
define the corner points of the new logical display limits in terms of millimetres offset from the
origin of the physical display. The exact position of the physical display origin is device depen-
dent. The specifics of various devices are covered later in this entry.

This procedure causes a new virtual coordinate system to be defined. SET_DISPLAY_LIM
calculates the new limits of the virtual coordinate system as a function of the current aspect ratio
and the new limits of the logical display. This does not affect the limits of the viewport. Since it
changes the size of the area onto which the viewport is mapped, it may scale the size of the image
displayed. It will not distort the image; it can only make it smaller or larger.

SET_DISPLAY_LIM should only be called while the graphics display is enabled.

Neither the value of the starting position nor the location of the physical pen or beam is altered by
this routine. Since this routine may redefine the viewing transformation, the starting position may
be mapped to a different coordinate on the display surface. A call to MOVE or INT_MOVE should
therefore be made after this call to update the value of the starting position and in so doing, place
the physical pen or beam at a known location.

If the logical display and logical locator are associated with the same physical device, a call to
SET_DISPLAY_LIM will set the logical locator limits equal to the new limits of the virtual
coordinate system. A call to SET_DISPLAY_LIM also sets the locator echo position to its default
value, the center of the world coordinate system.

Display Limits of Raster Devices
The internal CRT’s for Series 200 computers have the following limits:

Wide High Wide High Resolution
Computer mm mm points points Aspect points/mm
Model 216 160 120 400 300 .75 25
Model 217 230 175 512 390 7617 2.226
Model 220 (HP82913A) 210 158 400 300 .75 1.905
Model 220 (HP82912A) 152 114 400 300 .75 2.632
Model 226 120 88 400 300 .75 3.333
Model 236 210 160 512 390 7617 2.438
Model 236 Color 217 163 512 390 7617 2.39

Model 237 312 234 1024 768 .75 3.282

308 Graphics Procedure Reference

The physical size of the HP 98627A display (needed by the SET_DISPLAY_LIM procedure) may
be given to the graphics system by an escape function (OPCODE = 250). The physical limits
assumed until the escape function is given are:

CONTROL = 256 153.3mm wide and 116.7mm high.
512 153.3mm wide and 116.7mm high.

768 153.3mm wide and 142 2mm high.

1024 153.3mm wide and 153.3mm high.

1280 153.3mm wide and 153.3mm high.

The default logical display surface of the graphics display device is the maximum physical limits of
the screen. The physical origin is the lower left corner of the display.

The view surface is always centered within the current logical display surface. The origin of a
raster display is the lower-left dot.

HPGL Plotter Display Limits

Wide High Wide High Resolution

Plotter mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 524.25 32380 20970 6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7470 2575 191.25 10300 7650 7427 40.0
7550 411.25 254.25 16450 10170 6182 40.0
7475 416 259.125 16640 10365 .6229 40.0

The maximum physical limits of the graphics display for a HPGL device not listed above are
determined by the default settings of P1 and P2. The default settings of P1 and PZ are the values
they have after an HPGL 'IN' command. Refer to the specific device manual for additional
details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
DISPLAY_INIT is invoked. The view-surface is always justified in the lower left corner of the
current logical display surface (corner nearest the turret for the HP 7580 and HP 7585 plotters).
The physical origin of the graphics display is at the lower left boundary of pen movement.

Note
If the paper is changed in an HP 7580, HP 7585 or HP 7586 plotter
while the graphics display is initialized, it should be the same size of
paper that was in the plotter when DISPLAY_INIT was called. If a
different size of paper is required, the device should be terminated
(DISPLAY_TERM) and re-initialized after the new paper has been
placed in the plotter.

Error Conditions
The graphics system must be initialized and a display device enabled or this call will be ignored,
an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference 309

SET_ECHO_POS

IMPORT: dgl_lib

This procedure defines the locator echo position on the graphics display.

Syntax

SET_gcHo_pos)—~() 0 0

i Range
Item | Description/Default I Restrictions
X coordinate Expression of TYPE REAL -
y coordinate Expression of TYPE REAL -

Procedure Heading
PROCEDURE SET_ECHO_POS (Wxs Wy : REAL)}

Semantics
The x and y coordinate pair is the new echo position in world coordinates.

When echoing on the display device, SET_ECHO_POS allows a programmer to define the
position of the locator echo position. This is a point in the world coordinate system that represents
the initial position of the locator. It is used with certain locator echoes on the graphics display. For
example, itis used as the anchor point when a rubber band echo is performed. With this echo, the
graphics cursor is initially turned on at the locator echo position. From that time on, the cursor
reflects the position of the locator and a line extends from the locator echo position to the locator
as it moves around the graphics display. To be used in echoing, the point must be displayable.
Therefore, if the point specified is outside of the limits of the window the call is ignored.

The locator echo position will only be used when AWAIT_LOCATOR is called with echo types 2
through 8, e.g., type 4is a rubber band line echo. The locator echo position is only used when the
locator echo is being sent to the graphics display device, and is not used when sampling the
locator.

SET_ECHO_POS should only be called while the graphics display and locator are initialized. If
the point passed to SET_ECHO_POS is outside the current window limits, then the call to
SET_ECHO_POS is ignored and no error is given.

The default locator echo position is the center of the limits of the window. When the locator is
initialized, the locator echo position is set to the default value. When a call is made which affects
the viewing transformations for the graphics display surface or the logical locator limits, the
locator echo position is set to the default value. The calls which cause this are SET_ASPECT,
DISPLAY_INIT, SET_DISPLAY_LIM, LOCATOR_INIT, SET_LOCATOR_LIM, SET_WIN-
DOW, and SET_VIEWPORT.

310 Graphics Procedure Reference

Once the locator echo position is set, it retains this value until the next call to SET_ECHO_POS or
until a call is made which resets it to the default value.

Error Conditions
The graphics system must be initialized, and a display device and a locator device must be
enabled, or this call will be ignored, an ESCAPE (—27) will be generated, and GRAPHICSER-

ROR will return a non-zero value.

Graphics Procedure Reference

SET LINE STYLE

IMPORT: dgl_lib

This procedure sets the line style attribute.

Syntax

et Ine_sTYLE)—() O

Item | Description/Default | Re?t?irgt}ieons | Re“l’a";z;ee"ded
line style selector Expression of TYPE INTEGER MININT thru Device
MAXINT Dependent

Procedure Heading
PROCEDURE SET_LINE_STYLE (Line_Style : INTEGER);

Semantics
The line style selector is the line style to be used for lines, polylines, polygon edges, and text.

Markers are not affected by line-style. Polygon interior line-style is selected with SET_PGN_LS.

SET_LINE_STYLE sets the line style attribute for lines and text. The mapping between the value
of the line style attribute and the line style selected is device dependent. If a line style attribute is
requested that the device cannot perform exactly as requested, line style 1 will be performed.

There are three types of line-styles: start adjusted, continuous, and vector adjusted:

Start adjusted line-styles always start the cycle at the beginning of the vector. Thus if the current
line-style starts with a pattern, each vector drawn will start with that pattern. Likewise, if the
current line-style starts with a space and then a dot, each vector will be drawn starting with a space
and then a dot. In this case if the vectors are short, they might not appear at all.

Continuous line styles are generated such that the pattern will be started with the first vector
drawn. Subsequent vectors will be continuations of the pattern. Thus, it may take several vectors
to complete one cycle of the pattern. This type of line-style is useful for drawing smooth curves,
but does not necessarily designate either endpoint of a vector. A side effect of this type of
line-style is if a vector is small enough it might be composed only of the space between points or
dashes in the line-style. In that case, the vector may not appear on the graphics display at all.

311

312 Graphics Procedure Reference

Vector adjusted line-styles treat each vector individually. Individual treatment guarantees that a
solid component of the dash pattern will be generated at both ends of the vector. Thus, the
endpoints of each vector will be clearly identifiable. This type of line-style is good for drawing
rectangles. The integrity of the line-style will degenerate with very small vectors. Since some
component of the dash pattern must appear at both ends of the vector, the entire vector for a
short vector will often be drawn as solid.

The following figure illustrates how one pattern would be displayed using each one of the
different line-style types:

=i oEE
S
START ADJUSTED CONTINUOQUS VECTOR ADJUSTED

LINESTYLE USED

It should be apparent from the above discussion that drawing to the starting position will generate
a point (the shortest possible line) only if the line-style is such that the pen is down (or the beam is
on) at the start of that vector. Likewise, whole vectors may not appear on the graphics display
surface if the line-style is such that the vector is smaller than the blank space in the line-style. The
device handlers section of this document details the line-styles available for each device.

Note

When using continuous line styles, complement and erase drawing
modes (available on some raster displays e.g., HP 9826) may not
completely remove lines previously drawn. This happens since the
line style pattern may not be in sync with the first line when the second
line is drawn. By setting the line-style to solid when using complement
and erase drawing modes the application program can insure that the
line is completely removed.

Graphics Procedure Reference 313

Raster Line Styles
Eight pre-defined line-styles are supported on the graphics display. All of the line-styles may be
classified as being ‘“‘continuous’’:

— U W = U100 o
!
!
l
I
|
I

Raster Line Styles

Plotter Line Styles
The following table describes the line styles available on the supported plotters.

Number of continuous Number of vector adjusted
Device line-styles line-styles
9872 7 0
7580 7 6
7585 7 6
7470 7 0
Other 7 0

HP 9872 and 7470 Line Styles
(all are continuous)

314 Graphics Procedure Reference

[l

iz T T T T T T T L{L‘H
s . _ _ ____”_”-_”-”-”-Z”--Z CONTINUOUS
é e ——————————— =1
T I T —C Illf]_hlll
e_ - - oo T T T T T T ==

VECTOR ADJUSTED

HP 7580, 7585 and 7586 Line Styles

If the line style specified is not supported by the graphics display, the call is completed with
LINE_STYLE = 1 and no error is reported.

Error Conditions

The graphics system must be enabled and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return a non-zero value.

IMPORT: dgl_lib

Graphics Procedure Reference

SET_LOCATOR_LIM

This procedure redefines the logical locator limits of the graphics locator.

Syntax

minimum maximum minimum
5e7_LocaToR_L 1)—(() & O O

maximum error
y value variable name

Item Description/Default Regzrli'::%iims
minimum x value Expression of TYPE REAL(-
maximum x value Expression of TYPE REAL -
maximum y value Expression of TYPE REAL -
minimum y value Expression of TYPE REAL —
error variable name Variable of TYPE INTEGER -

Procedure Heading
PROCEDURE SET_LOCATOR_LIM (Amin s Xmax

Semantics

¥minsy Ymax

VAR Terr

REAL »
INTEGER)3

The minimum x value is the distance in millimetres that the left side of the logical locator limits is
offset from the left side of the physical locator limits.

The maximum x value is the distance in millimetres that the right side of the logical locator limits
is offset from the left side of the physical locator limits.

The minimum y value is the distance in millimetres that the bottom of the logical locator limits is
offset from the bottom of the physical locator limits.

The maximum y value is the distance in millimetres that the top of the logical locator limits is
offset from the bottom of the physical locator limits.

The error variable will contain an integer indicating whether the limits were successfully set.

315

316 Graphics Procedure Reference

Value Meaning
0 The display limits were successfully set.
1 The minimum x value was greater than or equal to the maximum x value and/or the

minimum y value was greater than the maximum y value.
The parameters specified were outside the physical display limits.

3 Attempt to explicitly define locator limits on a device which is both the logical locator
and the logical display. The logical display limits are used when a device is shared for
both purposes, and they cannot be redefined with this call.

If the error variable is non-zero, the call was ignored.

SET_LOCATOR_LIM allows an application program to specify the portion of the physical
locator device that should be used to perform locator functions. When the logical locator device is
enabled (via LOCATOR_INIT) the logical device limits are set to a device dependent portion of
the physical locator device. With a call to this routine the user can set the logical locator limits by
specifying a new area within the physical locator limits.

The pairs (minimum x value, minimum y value) and (maximum x value, maximum y value)
define the corner points of the new logical locator limits in terms of millimetres offset from the
origin of the physical locator. The exact position of the physical locator origin is device depen-
dent. Specific origins are covered later in this entry.

If a logical locator and a logical display are associated with the same physical device, then the
logical locator limits must be the same as the logical view surface limits. Specifically, the effects of
the association with the same physical device are as follows:

® The logical locator limits are initialized to the same values as the virtual coordinate system.

® Any call which redefines the virtual coordinate system limits will also redefine the logical
locator limits.

® The logical locator limits can not be defined by a call to SET_LOCATOR_LIM.

By changing the logical locator limits any portion of the graphics locator can be addressed, with
the restrictions stated above.

The logical locator limits always map directly to the view surface, therefore, distortion may result
in the mapping between the logical locator and the display when the logical locator limits and the
view surface have different aspect ratios. If the distortion is not desired it can be avoided by
assuring that the logical locator limits maintain the same aspect ratio as that of the view surface.

SET_LOCATOR _LIM should only be called while the graphics locator is enabled. SET_LOCA-
TOR_LIM sets the locator echo position to the default value (see SET_ECHO_POS).

Graphics Procedure Reference 317

Relative Locator Limits (Knob or Mouse)
The knob may be used as a locator on Series 200 computers. The default characteristics of the
knob on various Series 200 computers is listed in the table below.

Wide High Wide High Resolution
Computer mm mm points points Aspect points/mm
Model 216 160 120 400 300 .75 25
Model 217 230 175 512 390 7617 2.226
Model 220 (HP82913A) 210 158 400 300 .75 1.905
Model 220 (HP82912A) 152 114 400 300 .75 2.632
Model 226 120 88 400 300 .75 3.333
Model 236 210 160 512 390 7617 2.438
Model 236 Color 217 163 512 390 7617 2.39
Model 237 312 234 1024 768 .75 3.282

The knob uses the current display limits as its locator limits for locator echoes 2 though 8. For all
other echoes the above limits are used. An example of when the two limits may differ follows:

The knob locator is initialized on an HP 9826. The graphics display is an HP 98627A color
output card. The resolution of the locator is 0 through 399 in x dimension, and O through
299 in y dimension. The resolution of the display is O through 511 in x dimension, and O
through 389 in y dimension. When await_locator is used with echo 4, the locator will
effectively have the HP 98627A resolution for the duration of the await_locator call.
However if echo 1 is used with await_locator, the cursor will appear on the HP 9826 and the
locator has a resolution of 0 X399 and 0x299. Note that all conversion routines, and
inquiries will use the HP 9826 limits.

The physical origin of the locator device is the lower left corner of the display.

Absolute Locator Limits (HPGL Plotter or Graphics Tablet)
HPGL plotter and graphics tablets can be used as locators. The default characteristics of some
HPGL devices are listed below.

Plotter/ Wide High Wide High Resolution

Tablet mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 524.25 32380 20970 6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7470 2575 191.25 10300 7650 .7427 40.0
7550 411.25 254.25 16450 10170 .6182 40.0
7475 416 259.125 16640 10365 .6229 40.0
9111 300.8 217.6 12032 8704 7234 40.0

The maximum physical limits of the locator for a HPGL device not listed above are determined by
the default settings of P1 and P2. The default settings of P1 and P2 are the values they have after
an HPGL 'IN’ command. Refer to the specific device manual for additional details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
LOCATORL_INIT is invoked.

98615-90035, rev: 3/85

318 Graphics Procedure Reference

Note
If the paper is changed in an HP 7580, HP 7585 or HP 7586 plotter
while the graphics display is initialized, it should be the same size of
paper that was in the plotter when DISPLAY_INIT was called. If a
different size of paper is required, the device should be terminated
(DISPLAY_TERM) and re-initialized after the new paper has been
placed in the plotter.

Error Conditions
The graphics system must be initialized and a display device enabled or this call will be ignored,
an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference 319

SET_LINE WIDTH

IMPORT: dgl_lib
This procedure sets the line-width attribute. The number of line-widths possible is device
dependent.

Syntax

SET_LINE NIOTH)—+{) O

Item i Description/Default | Rethiitst;ii)ns
line-width selector | Expression of TYPE INTEGER | MININT thru MAXINT

Procedure Headings
PROCEDURE SET_LINE_WIDTH (Linewidth : INTEGER)3

Semantics

SET_LINE_WIDTH sets the line-width attribute for lines, polylines and text. The line-width
attribute does not affect markers which are defined to be always output with the thinnest
line-width supported on the device. All devices support at least one line-width. The range of
line-widths is device dependent but line-width 1 is always the thinnest line-width supported. For
devices that support multiple line-widths, the line-width increases as line-width does until the
device supported maximum is reached. For example, line-width = 1 specifies the thinnest,
line-width = 2 specifies the next wider line-width, etc.

If line-width is greater than the number of line-widths supported by the graphics display or
line-width is less than 1, then the line-width will be set to the thinnest available width (line-width
= 1). All subsequent lines and text will then be drawn with the thinnest available line-width. A call
to INQ_WS with OPCODE equal to 1063 to inquire the value of the line-width will then return a
1.

The initial line-width is the thinnest width supported by the device (line-width = 1).

Note
All current devices support a single line-width.

Error Conditions

The graphics system must be initialized and a display device must be enabled or this call is
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

320 Graphics Procedure Reference

SET PGN_COLOR

IMPORT: dgl_lib
dgl_poly

This procedure selects the polygon interior color attribute for subsequently generated polygons
by providing a selector for the color table.

Syntax

SET_PGN_COLOR > (O .. ()

L Range Recommended
Item | Description/Default | Restrictions Range
color selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent.

Procedure Heading
PROCEDURE SET_PGN_COLOR (Ciwdex : INTEGER)3

Semantics

The color selector is an index into the color table. The contents of the color table are then used to
specify the color when primitives are drawn. On some devices (HPGL plotters). the color selector
maps directly to a pen number for the device. On the HP 9836C, the entries in the color table can

be modified with SET_COLOR_TABLE. The color actually used depends on the value in a
device dependent color table.

At device initialization a default color table is created by the graphics system. The size and
contents of the table are device dependent. At least one entry exists for all devices. A call to
INQ_WS with OPCODE equal to 1053 will return the number of colors available on a given
graphics device. Some devices allow the color table to be modified with SET_TABLE.

The default value of the color attribute is 1. If the value of the color selector is not supported on
the graphics display, the color attribute will be set to 1.

A color selector of O has special effects depending on the graphics display used. For raster
devices, a color selector of 0 means to draw in the background color. For most plotters, it puts the
pen away.

Dithering

If the device is not capable of reproducing a color in the color table, the closest color which the
device is capable of reproducing is used instead. For polygon fill (in a device dependent mode)
this may involve dithering. For example, the HP 98627A color output interface card is capable of
a large selection of polygon fill colors, but only 8 line colors. Thus. the fill color could match the
selected color much more closely than the line color used to outline the polygon. See SET_
COLOR_TABLE for details on how colors are matched to the devices.

Default Raster Color Map

The following table shows the default (initial) color table for the black and white displays (HP

9816 / HP 9920 / HP 9826 / HP 9836):

Colors 17 though 31 are set to white.

Graphics Procedure Reference 321

Index # Hue Saturation | Luminosity
0 0 0 0
1 0 0 1.0000
2 0 0 0.9375
3 0 0 0.8750
4 0 0 0.8125
5 0 0 0.7500
6 0 0 0.6875
7 0 0 0.6250
8 0 0 0.5625
9 0 0 0.5000
10 0 0 0.4375
11 0 0 0.3750
12 0 0 0.3125
13 0 0 0.2500
14 0 0 0.1875
15 0 0 0.1250
16 0 0 0.0625

The following table shows the default (initial) color table for the color displays (HP 9836C and

HP 98627A):
Index # | Color name Red Green Blue

0 Black 0.000000 | 0.000000 | 0.000000
White 1.000000 | 1.000000 | 1.000000

2 Red 1.000000 | 0.000000 | 0.000000

3 Yellow 1.000000 | 1.000000 | 0.000000

4 Green 0.000000 | 1.000000 | 0.000000

5 Cyan 0.000000 | 1.000000 | 1.000000

6 Blue 0.000000 | 0.000000 | 1.000000

7 Magenta 1.000000 | 0.000000 | 1.000000

8 Black 0.000000 | 0.000000 | 0.000000

9 Olive green | 0.800000 | 0.733333 | 0.200000

10 Aqua 0.200000 | 0.400000 | 0.466667
11 Royal blue 0.533333 | 0.400000 }| 0.666667
12 Violet 0.800000 | 0.266667 | 0.400000
13 Brick red 1.000000 | 0.400000 | 0.200000
14 Burnt orange | 1.000000 | 0.466667 | 0.000000
15 Grey brown | 0.866667 | 0.533333 | 0.266667

Colors 9 though 15 are a graphic designers idea of colors for business graphics. Color table
entries not shown above are set to white.

322 Graphics Procedure Reference

Raster Drawing Modes
Raster drawing modes have no effect on polygon fill color.

Plotters
A Color Selector of 0 selects no pens (the current pen is put away). The supported range of Color
Selectors for each supported plotter is:

¢ 9872A - 0 thru 4

¢ 9872B - 0 thru 4

© 9872C/S/T - 0 thru 8

® 7550A/7580A/7585A/7586B - 0 thru 8
e 7470A - 0 thru 2

7475 -0 thru 6

Error Conditions
The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (—27) will be generated, and GRAPHICSERROR returns a non-zero value.

Graphics Procedure Reference

SET _PGN_LS

IMPORT: dgl_lib
dgl_poly

This procedure selects the polygon interior line-style attribute for subsequently generated
polygons by providing a selector for the device dependent line-style table.

Syntax

o)+ ©

e Range Recommended
Item | Description/Default ’ Restrictions Range
line-style selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent

Procedure Heading
PROCEDURE SET.PGN_LS (Lindex : INTEGER)3

Semantics
The line style selector is the line style to be used for polygon interiors.

Line-styles for other primitives are selected using SET_LINE_STYLE.

The mapping between the value of the line style attribute and the line style selected is device
dependent. If a line style attribute is requested that the device cannot perform exactly as
requested, line style 1 will be performed.

There are three types of line-styles - start adjusted, continuous, and vector adjusted:

Start adjusted line-styles always start the cycle at the beginning of the vector. Thus if the current
line-style starts with a pattern, each vector drawn will start with that pattern. Likewise, if the
current line-style starts with a space and then a dot, each vector will be drawn starting with a space
and then a dot. In this case if the vectors are short, they might not appear at all.

Continuous line styles are generated such that the pattern will be started with the first vector
drawn. Subsequent vectors will be continuations of the pattern. Thus, it may take several vectors
to complete one cycle of the pattern. This type of line-style is useful for drawing smooth curves,
but does not necessarily designate either endpoint of a vector. A side effect of this type of
line-style is if a vector is small enough it might be composed only of the space between points or
dashes in the line-style. In that case, the vector may not appear on the graphics display at all.

323

324 Graphics Procedure Reference

Vector adjusted line-styles treat each vector individually. Individual treatment guarantees that a
solid component of the dash pattern will be generated at both ends of the vector. Thus, the
endpoints of each vector will be clearly identifiable. This type of line-style is good for drawing
rectangles. The integrity of the line-style will degenerate with very small vectors. Since some
component of the dash pattern must appear at both ends of the vector, the entire vector for a
short vector will often be drawn as solid.

The following figure illustrates how one pattern would be displayed using each one of the
different line-style types:

’i_?fﬂ =i =
i] o

}LI_:‘JJ LM‘L‘”I !I__L_:_U_Ii
START ADJUSTED CONTINUOUS VECTOR ADJUSTED

It should be apparent from the above discussion that drawing to the starting position will generate
a point (the shortest possible line) only if the line-style is such that the pen is down (or the beam is
on) at the start of that vector. Likewise, whole vectors may not appear on the graphics display
surface if the line-style is such that the vector is smaller than the blank space in the line-style. The
device handlers section of this document details the line-styles available for each device.

Note

When using continuous line styles, complement and erase drawing
modes (available on some raster displays e.g., HP 9826) may not
completely remove lines previously drawn. This happens since the
line style pattern may not be in sync with the first line when the second
line is drawn. By setting the line style to solid when using complement
and erase drawing modes the application program can insure that the
line is completely removed.

Graphics Procedure Reference 325

Raster Line Styles
Eight pre-defined line-styles are supported on the graphics display. All of the line-styles may be
classified as being ‘‘continuous’’:

- — — o —— — — — — —— —— —— — — — — — ——

Raster Line Styles

Plotter Line Styles
The following table describes the line styles available on the supported plotters.

Number of continuous Number of vector adjusted
Device line-styles line-styles
9872 7 0
7470 7 0
7475 7 0
7550 7 6
7580 7 6
7585 7 6
7586 7 6
Other 7 0
7 .
B — —

HP 9872, 7470 and 7475 Line Styles
(all are continuous)

326 Graphics Procedure Reference

—NDwWwhAhUIOONODOR—MNW

If the line style specified is not supported by the graphics display. the call is completed with
LINE_STYLE =

The graphics system must be enabled and a display device must be enabled or this call will be

HP 7550, 7580, 7585 and 7586 Line Styles

1 and no error is reported.

ignored and GRAPHICSERROR will return a non-zero value.

Error conditions:

The graphics system must be initialized and a display device must be enabled or this call will be

ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return an non-zero

value.

CONTINUOUS

Graphics Procedure Reference

SET PGN_STYLE

IMPORT: dgl_lib
dgl_poly

This procedure selects the polygon style attribute for subsequently generated polygons by
providing a selector for the polygon style table.

Syntax

e o) —~(D ®

.. Range Recommended
Item I Description/Default ’ Restrictions | Range
polygon style Expression of TYPE INTEGER MININT thru Device
selector MAXINT dependent

Procedure Heading
PROCEDURE SET_PGN_STYLE (Pindex : INTEGER)i

Semantics

Polygon styles can vary in polygon interior density, polygon interior orientation and polygon
edge display. See SET_PGN_TABLE for details on default styles, and how the polygon style
table may be changed.

Error Conditions

The graphics system must be initialized and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return an non-zero value.

327

328 Graphics Procedure Reference

SET PGN TABLE

IMPORT: dgl_lib
dgl_poly
This procedure defines a polygon style attribute, i.e. an entry in a polygon style table.
Syntax
© O

edge -
selector

. Range Recommended
Item Description/Default Restrictions Range
entry selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent
fill density Expression of TYPE REAL MININT thru -1thru 1
MAXINT
fill orientation Expression of TYPE REAL MININT thru -90 thru 90
MAXINT
edge selector Expression of TYPE INTEGER MININT thru -
MAXINT

Procedure Heading

PROCEDURE SET_PGN_TABLE (Index : INTEGER3
Densty : REAL3
Orient 3 REALS
Edge : INTEGER)3

Semantics

This routine defines the attribute of polygon style, i.e. it specifies an entry in a polygon style table.
This entry contains information that specifies polygon interior density, polygon interior orienta-
tion. polygon edge display, and device-independence of polygon display.

The entry selector specifies the entry in the polygon style table that is to be redefined.

The fill density determines the density of the polygon interior fill. The magnitude of this value is
the ratio of filled area to non-filled area. Zero means the polygon interior is not filled. One
represents a fully filled polygon interior. All non-zero values specify the density of continuous
lines used to fill the interior.

Graphics Procedure Reference 329

Positive density values request parallel fill lines in one direction only. Negative values are used to
specify crosshatching. For a given density, the distance between two adjacent parallel lines is
greater with cross hatching than in the case of pure parallel filling. Calculations for fill density are
based on the thinnest line possible on the device and on continuous line-style.

The distance between fill lines — hence density — does not change with a change of scale caused
by a viewing transformation. If the interior line-style is not continuous, the actual fill density may
not match that found in the polygon style table.

The fill orientation represents the angle (in degrees) between the lines used for filling the
polygon and the horizontal axis of the display device. The interpretation of fill orientation is
device-dependent. On devices that require software emulation of polygon styles, the angle
specified will be adhered to as closely as possible, within the line-drawing capabilities of the
device. For hardware generated polygon styles, the angle specified will be adhered to as closely
as is possible given the hardware simulation of the requested density. If crosshatching is specified,
the fill orientation specifies the angle of orientation of the first set of lines in the crosshatching, and
the second set of lines is always perpendicular to this.

The value of the edge selector determines whether the edge of the polygon is displayed. If the
edge selector is 0, the edges will not be displayed. If the edge selector is 1, display of individual
edge segments depends on the operation selector in the call that draws the polygon set,
POLYGON, INT_POLYGON, POLYGON_DEV_DEP, or INT_POLYGON_DD.

If polygon edges are displayed, they adhere to the current line attributes of color, line-style, and
line-width, in effect at the time of polygon display.

A device-dependent number of polygon styles are available. All devices support at least 16
entries in the polygon table. The polygon styles defined in the default tables are defined to exploit
the hardware capabilities of the devices they are defined for.

Polygon interiors can be generated in either a device-dependent or device-independent fashion,
by calling POLYGON_DEV_DEP or POLYGON respectively.

Polygons generated in a device-dependent fashion will utilize the available hardware polygon
generation capabilities of the device to increase the speed and efficiency of polygon generation.
The output may vary depending on the device. Devices that have no hardware polygon genera-
tion capabilities will only do a minimal representation of the polygon if a device-dependent
representation of the polygon is requested. If an edge is not requested, an outline of the
non-clipped boundaries of the polygon interior will be drawn in the current polygon interior color
and polygon interior line-style if the density of the polygon interior was not zero.

Polygons generated in a device-independent fashion will adhere strictly to the polygon style
specification. The polygon interior generated would look similar when generated on different
devices for a given polygon style specification. However, on raster devices rasterization of the fill
lines may leave empty pixels when solid fill is requested with an orientation that is not 0 or 90
degrees. Available hardware would only be used where the polygon style could be generated
exactly as specified.

330 Graphics Procedure Reference

The number of entries in the polygon style table and the default contents of the table are device
dependent. However, all devices support the following polygon style table:

Entry Density Angle Edge
1 0.0 0.0 1
2 0.125 90.0 1
3 0.125 0.0 1
4 ~-0.125 0.0 1
5 0.125 45.0 1
6 0.125 —-45.0 1
7 -0.125 45.0 1
8 0.25 90.0 1
9 0.25 0.0 1

10 -0.25 0.0 1
11 0.25 45.0 1
12 0.25 ~45.0 1
13 -0.25 45.0 1
14 -05 0.0 1
15 1.0 0.0 0
16 1.0 0.0 1

Error Conditions

The graphics system must be initialized, a display must be enabled. and the parameters must be
within the specified limits or this call will be ignored, an ESCAPE (— 27) will be generated, and
GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference

SET_TEXT_ROT

IMPORT: dgl_lib

This procedure specifies the text direction.

Syntax

x-axis y-axis
S WONEARO NEANO

.. Range
Item | Description/Default I Restrictions
x-axis offset Expression of TYPE REAL -
y-axis offset Expression of TYPE REAL -

Procedure Heading
PROCEDURE SET_TEXT_ROT (Dx, Dy : REAL)3

Semantics

The x axis offset and the y axis offset specify the world coordinate components of the text
direction vector relative to the world coordinate origin. These components cannot both be zero.

This procedure specifies the direction in which graphics text characters are output. The default
value (X-axis offset = 1.0; Y-axis offset = 0.0) for the text direction vector is such that characters
are drawn in a horizontal direction left to right. The default value is set during GRAPHICS_INIT
and DISPLAY_INIT. With X-axis offset = - 1.0 and Y-axis offset = 1.0 a 135 degree rotation
from the horizontal (in a counter clockwise direction) may be obtained.

Y Axi1s Offset
2.5

X fAxi1s Offset
1.0

Text Rotation Angle

Error Conditions

The graphics system must be initialized, a display must be enabled, and the parameters must be
within the specified limits or this call will be ignored, an ESCAPE (—27) will be generated, and
GRAPHICSERROR will return a non-zero value.

331

332 Graphics Procedure Reference

SET TIMING

IMPORT: dgl_lib
This procedure selects the timing mode for graphics output.
Syntax
(O O
. Range
Item Description/Default Restrictions
timing mode selector | Expression of TYPE INTEGER I Oorl

Procedure Heading
PROCEDURE SET_TIMING (Orpcode : INTEGER)i

Semantics
The timing mode selector determines the timing mode used.

Value l Meaning
0 Immediate visibility mode
1 System buffering mode

Graphics library timing modes are provided to control graphics throughput and picture update
timing. Picture update timing refers to the immediacy of visual changes to the graphics display
surface. Regardless of the timing mode used, the same final picture is sent to the graphics display.
SET_TIMING only controls when a picture appears on the graphics display. not what appears.

The graphics system supports two timing modes:

e Immediate visibility Requested picture changes will be sent to the graphics display device
before control is returned to the calling program. Due to operating system delays there may
be a delay before the picture changes are visible on the graphics display device.

e System buffering Requested picture changes will be buffered by the graphics system. This
means that the graphics output will not be immediately sent to the display device. This allows
the graphics library to send several graphics commands to the graphics display device in one
data transfer, therefore, reducing the number of transfers. System buffering is the initial
timing mode.

The following routines implicitly make the picture current:

AWAIT_LOCATOR DISPLAY_TERM INPUT_ESC
LOCATOR_INIT SAMPLE_LOCATOR

Graphics Procedure Reference 333

The immediate visibility mode is less efficient than the system buffering mode. It should only be
used in those applications that require picture changes to take place as soon as they are defined,
even if the finished picture takes longer to create. When changing the timing mode to immediate
visibility the picture is made current.

An alternative to immediate visibility that will solve many application needs is the use of system
buffering together with the MAKE_PIC_CURRENT procedure. With this method, an application
program places graphics commands into the output buffer and flushes the buffer (see MAKE_
PIC_CURRENT) only at times when the picture must be fully displayed.

A call to MAKE_PIC_CURRENT can be made at any time within an application program to insure
that the image is fully defined. MAKE_PIC_CURRENT flushes the output buffer but does not
modify the timing mode.

Before performing any non-graphics system input or output (to a graphics system device) such as
a PASCAL read or write, the output buffer must be empty. If the buffer is not flushed (via
immediate visibility of MAKE_PIC_CURRENT) prior to non-graphics system [/O, the resulting
image may contain some 'garbage’ such as escape functions or invalid graphics data.

Note

Although SET_TIMING can be used with all display devices, only
HPGL plotters buffer commands.

Error Conditions

The graphics system must be initialized and all parameters must be in range or this call will be
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

334 Graphics Procedure Reference

SET_VIEWPORT

IMPORT: dgl_lib

This procedure sets the boundaries of the viewport in the virtual coordinate system.

Syntax

SET_VIEWPORT

minimum
x value

maximum minimum
x value y value

max 1mum
y value

Item Description/Default Re?t?ir::st!if)ns
minimum x value Expression of TYPE REAL 0.0-1.0
maximum X value Expression of TYPE REAL 0.0-1.0
minimum y value Expression of TYPE REAL 0.0-1.0
maximum y value Expression of TYPE REAL 0.0-1.0

Procedure Heading
PROCEDURE SET_VIEWPORT (Uxmins Yxmax:
Uymins Yvmax : REAL)3
Semantics
The minimum x value is the minimum boundary in the X-direction expressed in virtual coordin-
ates.

The maximum x value is the maximum boundary in the X-direction expressed in virtual
coordinates.

The minimum y value is the minimum boundary in the Y-direction expressed in virtual coordin-
ates.

The maximum vy value is the maximum boundary in the Y-direction expressed in virtual
coordinates.

SET_VIEWPORT sets the limits of the viewport in the virtual coordinate system. The viewport
must be within the limits of the virtual coordinate system; otherwise the call will be ignored.

The initial viewport is set up with the minimum x and y values set to 0.0 and the maximum X and
Y values set to 1.0.

Graphics Procedure Reference 335

The initial viewport is set by GRAPHICS_INIT and SET_ASPECT. This initial viewport is
mapped onto the maximum visible square within the logical display limits. This area is called the
view surface. The placement of the view surface within the logical display limits is dependent
upon the device being used. It is generally centered on CRT displays and is placed in the lower
left-hand corner of plotters.

By changing the limits of the viewport, an application program can display an image in several
different positions on the same graphics display device. A program can make a call to SET_
VIEWPORT anytime while the graphics system is initialized.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent a known world coordinate position. A call to MOVE
or INT_MOVE should be made after this call to update the starting position.

Error Conditions

The graphics system must be initialized, all parameters must be within the specified range, the
minimum X value must be less than the maximum X value and the minimum Y value must be less
than the maximum Y value and all parameters must be within the current virtual coordinate
system boundary, or this call will be ignored, an ESCAPE (—27) will be generated, and
GRAPHICSERROR will return a non-zero value..

336 Graphics Procedure Reference

SET_WINDOW

IMPORT: dgl_lib

This procedure defines the boundaries of the window.

Syntax

Item Description/Default Regi‘irgt;ii)ns
left Expression of TYPE REAL See below
right Expression of TYPE REAL See below
bottom Expression of TYPE REAL See below
top Expression of TYPE REAL See below

Procedure Heading

PROCEDURE SET_WINDOW (Wxmins Wxmax:
Wyminysy Wymax @ REAL 33

Semantics

The left is the minimum boundary in the X-direction expressed in world coordinates. (i.e., the left
window border). Must not equal maximum x value.

The right is the maximum boundary in the X-direction expressed in world coordinates. (i.e. the
right window border). Must not equal minimum x value.

The bottom is the minimum boundary in the Y-direction expressed in world coordinates. (i.e. the
bottom window border). Must not equal maximum y value.

The top is the maximum boundary in the Y-direction expressed in world coordinates. (i.e. the top
window border). Must not equal minimum y value.

SET_WINDOW defines the limits of the window. All positional information sent to and received
from the graphics system is specified in world coordinate units. This allows the application
program to specify coordinates in units related to the application.

If the top value is less than the bottom value, the Y-axis will be inverted. If the right value is less
than the left boundary, the X-axis will be inverted.

Graphics Procedure Reference 337

The window is linearly mapped onto the viewport specified by SET_VIEWPORT. This is done by
mapping the left boundary to the minimum X-viewport boundary, the right boundary to the
maximum X-viewport boundary, the bottom boundary to the minimum Y-viewport boundary,
and the top boundary to the maximum Y -viewport boundary. If distortion of the graphics image is
not desired, the aspect ratio of the window boundaries should be equal to the aspect ratio of the
viewport.

The default window limits range from —1.0to 1.0 on both the X and Y axis. GRAPHICS_INIT is
the only procedure which sets the window to its default limits.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent a known world coordinate position. A call to MOVE
or INT_MOVE should therefore be made after this call to update the starting position.

SET_WINDOW can be called at anytime while the graphics system is initialized.

Error Conditions

The graphics system must be initialized, the minimum value for either axis must not equal the
maximum value for that axis or this call will be ignored, an ESCAPE (- 27) will be generated, and
GRAPHICSERROR will return a non-zero value.

338 Graphics Procedure Reference

Graphics Procedure Reference

Module Dependency Table

The Module Dependency Table shows which modules are imported by the standard LIBRARY, 10,
GRAPHICS, and SEGMENTER modules.

Module to Module(s) Upon
Be Imported Which It Depends
LIBRARY Modules:
RND SYSGLOBALS
HPM -
9] (@) -
LOCKMODULE SYSGLOBALS
10 Modules:
IODECLARATIONS SYSGLOBALS
IOCOMASM SYSGLOBALS, IODECIL.ARATIONS
GENERAL_O SYSGLOBALS, IODECIL.ARATIONS
GENERAL_1 SYSGLOBALS, IODECLARATIONS
GENERAL_2 SYSGLOBALS, IODECLARATIONS, GENERAL _1, HPIB_1
GENERAL_3 SYSGLOBALS, IODECLARATIONS
GENERAL_4 SYSGLOBALS, IODECLARATIONS, HPIB_1
HPIB_0 SYSGLOBALS, IODECLARATIONS
HPIB_1 SYSGLOBALS, IODECLARATIONS
HPIB_2 SYSGLOBALS, IODECLARATIONS, HPIB_0, HPIB_1
HPIB_3 SYSGLOBALS, IODECLARATIONS, GENERAL_1, HPIB_0, HPIB_1
SERIAL_O SYSGLOBALS, IODECLARATIONS
SERIAL_3 SYSGLOBALS, IODECLARATIONS
GRAPHICS (and FGRAPHICS) Modules:
DGL_LIB ASM, IODECLARATIONS, SYSGLOBALS, MINI, ISR, MISC, FS,
SYSDEVS, and all GRAPHICS modules except DGL_INQ and
DGL_POLY :
DGL_POLY %é?_(BIII:ISBALS, SYSDEVS, and all GRAPHICS modules except
DGL_INQ ASM, SYSGLOBALS, A804XDVR, DGL_TYPES, DGL_VARS,
DGL_GEN, GLE_TYPES, GLE_GEN
SEGMENTER Modules:
SEGMENTER LOADER, LDR, SYSGLOBALS, MISC

339

340 Graphics Procedure Reference

Subject Index

Acceleration, pen. 86
Anisotropic scaling. 10
Aspectratio................... 11,34,60,98
Attributes, color. L 99
AWAIT_LOCATOR procedure. 94,220
Axes:
Descriptionof 20,62
Labelling........... ..o 25
Logarithmic. 64
AxesGrid program. 62,142
Background value.................. ... 121
BAR KNOB program. 87,89,149
BAR KNOB2 program 88,152
Boldlabels............................ 19
Booting the Pascal system 7
Cartesian coordinates 6
Cell character 43
Centeringlabels. 17
Charactercell. 43
Character size, setting 16,45
CharCellprogram 43,157
CHARSIZE procedure. 46,50
Choosing the graphics display device 6
CLEAR_DISPLAY procedure. 55,225
CLIPDRAW procedure 25,32,62
Clippinglines........... ... 23
Closed loop system. 87
Color displays, external 84
COLORprogram 107,158
Color:
Additional colors. 116,121,123
Business 100
CMY ColorCube. 111
Ditheredcolors................ 118,121

Effectiveuseof.................... 133

Gamuts. 137
Graphicso 99
Hardcopy 137
HSL Color Cylinder. 112
HSLmodel................... 103,107
Hue.... oot 103
Luminosityc.oi i 103
Map..........coiiiii 122
Mixing. ... 134
Model resolution 126
Models. 102,107
Objectiveuse of 135
Primary..........cccoouuiiiiiinns 100
References 139
RGB ColorCube.................. 110
RGBmodel................... 102,107
Saturation., 103
Seeing.cvvviiiiiiii 133
SPaACES. ..ttt 109
Subjectiveuseof 135
Table. 100
Vector ... 118
Compiling demonstration programs 4
Complementing lines. 55,128
Continuous degrees of freedom. 92
Control value (DISPLAY_INIT) 7
ControlWord variable 7
Conversion between coordinate systems . .. 40
CONVERT_-WTODMM procedure. 24,226
CONVERT_WTOLMM procedure. 227
ConvertVirtualToWorld procedure 41
ConvertWorldToVirtual procedure 42

Coordinate systems, conversion between. .. 40
Coordinates:

Cartesian............cccoviiiiiiiains 6
Rectangular.t 6
Virtual 13
World. 13,226,227
CRT drawingmodes 55,128
CRT, graphics 6
CrtAddrvariable. 7,81
CsizeProgprogram 165
Cube,Color. ... 110
Customizing demo programs for your system 6
Cylinder, Color 112

Data-driven plotting 71
DataPoint program 6,166
Defining a viewport. 13
Degrees of freedom:
Continuous. 92
Non-separable 92
Numberof 88
Qualityof 88
Quantizable. 93
Separability of. 38,92
Demonstration programs. 4.6
Device selector (DISPLAY_INIT) 6
DGLPRGdisc 1
Direction, label. 17,48
Display design. 134
Display limits, setting. 33
DISPLAY _FINIT procedure 228
DISPLAY_INIT procedure 6,81.84,232
DISPLAY_TERM procedure. 237
Displays:
Externalcolor. 84
Turningonandoff.................. 39
Dithered colors 121
Dithering...................... 75,117,123
Dominant lines, drawing. 55,128
Drawinglines........................... 7
Drawing modes, CRT 55,128
DrawMdPrg program. 56,166
Dumping rasterimages. 82
Echoes............ 94,97,221
Erasinglines.................... ... 55,128
External color displays 84
External plotter control 85
Fast drawing procedures. 56
FillGraph program. 78,170
Filling, polygon 74
FillProg program 76,169
Force,pen.............. 86
Framebuffer 115,121,129
Frame, window 37

Freedom, degreesof 88

Gamuts, color 137
GLOAD procedure 68
Graphics display device, selecting 6
Graphicsdump 82
Graphics, interactive 87
GRAPHICS key. 39
GRAPHICS Library, using 4
Graphics memory address 69
Graphics memory size. 69
Graphics tablet. 98
GRAPHICSERROR procedure 238
GRAPHICS_INIT procedure. 9,240
GRAPHICS_TERM procedure 9,241
GRID procedure 64
Grids................. ... 62
GSTORE procedure 68,83
GstorProgprogram. 171
GTEXT procedure 15,25,32,50,242
Halftoning 117
Hardcopy, color 137
Highlighting data curves 79
HP 98627A RGB interface. 84
HSL colormodel. 103,107,126
Hue 103

Images:

Duraping. 82

Storing and retrieving 68
INCLUDE files 5,7
Input device selection 89
INPUT.ESC procedure. 244
INQ.COLOR_TABLE procedure. 247
INQ_.PGN_TABLE procedure. 249
INQ_WS procedure. 13,34,37,51,251
Interactive graphics 87
INT_LINE procedure. 56,258
INT_-MOVE procedure. 56,260
INT_POLYGON procedure 262
INT_.POLYGON_DD procedure. 265
INT_POLYLINE procedure 269
IsoProg program 60,180
Isotropic scaling 10,59

Justifyinglabels 50
JustProg program 53,186
KEYBOARDfile 89
LABEILJUSTIFY procedure 50
Labellingaplot 43
LabellingAxes......................... 25
Labels:
Bold.......... ...l 19
Centeringccooviein. 17
Directionof 17,48
Justifying. 50
LdirProg program 49,190
LEMprograms...................... 73,76
Limits, display 33
Linedrawing 7
LINEprocedure 8,32
Line Styles, selecting. 57
Linevalue 121
Lines, clipping........... 23
Loading the Pascal system 7
LOCATOR program 94,98,191
LOCATOR.INIT procedure............. 271
LOCATOR_TERM procedure 274
Locators.coooiiiiii i, 220
Logarithmic plotting 64
LogPlotprogram 66,194
LT instruction. 57
Luminosity. 103

MAKE _PIC_CURRENT procedure. 275
Map,color........... it 122
MARKER procedure 79,276
MarkrProg program. 80,196
Memory address, graphics 69
Memory size, graphics. 69
Models, color. 102,107
Modes, drawing. 55

Module Dependency Table 339

Monochromatic defaults in color table 101
MOVE procedure. 8,32,277
Multi-line objects 72

Non-separable degrees of freedom 92

O

OUTPUT_ESC procedure ... 39,55,82,85,278

P

Pascal system, loading 7
Pen:

Acceleration 86

Force............ 86

Speed 85
Permanentcommand 4
Photographingthe CRT................ 138
Pixel 11,75
PLineProg program. 71,197
Plotlabelling 43
Plottercontrol 85
Plotter, selectinga...................... 81
Plotters. 114
Plottingandthe CRT 138
Polygonfilling 74
Polygoninteriors. 121
POLYGON procedure. 72,74,283
POLYGON_DEV_DEP procedure 74,286
Polygons 132
POLYLINE procedure. 71,290
PolyProg progtam 73,198
Quantizable degrees of freedom 93

1§

Raster images, dumping................. 82
Ratio, aspect. 34.60,98
Rectangular coordinates 6
References, color. 139
Resolution of color models. 126
Retrieving and storing images 68
RGB colormodel. 102,107,126
RGBinterface 84
Rotation, label 17,48
Rubber echoes. 97
Running demonstration programs 4
SAMPLE_LOCATOR procedure.. 292
Saturation 103
Scaling L. 9
Scaling,isotropic. L. 59
Screendump.............. 82
Selecting the graphics display device. 6
Separable degrees of freedom 88,92
SET_ASPECT procedure. 11,14,33,294
SET_CHAR_SIZE procedure 16.44,46,50,296
SET_COLOR procedure 99,114,297

SET_COLOR.MODEL procedure 101,300
SET_COLOR_TABLE

procedure 55,101,114,302
SET_DISPLAY_LIM procedure. 24.33,306
SET ECHO procedure 98
SET_ECHO_POS procedure 309
SET_LINE_STYLE procedure. 57311
SET_LINE WIDTH procedure 319
SET_LOCATOR_LIM procedure 98,315
SET_PGN_COLOR procedure 99,114,320
SET PGN_LS procedure 323
SET_PGN_STYLE procedure. 75,327
SET_PGN_TABLE procedure. 328
SET_TEXT_ROT procedure 17,48,331
SET_TIMING procedure. 332

SET_VIEWPORT procedure 14,34,37,334
SET_WINDOW

procedure 9,14,34.35,47.59,336
Shadinggraphs 78

SinAspect program 12,199
SinAxesl program. 22,200
SinAxes2 program. 26,204
SinClip program 24,209
SinLabell program 15,213
SinLabel2 program 16,18,214
SinLabel3 program 19,215
SinLine program 8,216
SinViewpt program. 216
SinWindow program. 10,217
Solutionvector 118
Speed, pen....... 86
Storing and retrieving images. 68
STRLEN procedure 17
STRWRITE procedure 25
System Library. 4
Targetvector 118
Testprogram 89,94
Text, writing to the graphics screen 15,132
Tickmarks 20,62

Vector,color 118
Viewport, defining 13,34
Virtual coordinates 13
Vision, color. 133

What command. 4
Window frame, drawing................. 37
Window limits, calculating 35
World coordinates 13,226,227
WRITELN procedure 25
Writingmodes. 127

Writing text to the graphics screen. 15

/A eaciano

Part No. 98615-90035 Printed in U.S.A,
E 1184 First Edition, with update
Microfiche No. 98615-99035 November 1984

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	xBack

